<< Chapter < Page Chapter >> Page >

The extent to which the vapor pressure of a solvent is lowered and the boiling point is elevated depends on the total number of solute particles present in a given amount of solvent, not on the mass or size or chemical identities of the particles. A 1 m aqueous solution of sucrose (342 g/mol) and a 1 m aqueous solution of ethylene glycol (62 g/mol) will exhibit the same boiling point because each solution has one mole of solute particles (molecules) per kilogram of solvent.

Calculating the boiling point of a solution

What is the boiling point of a 0.33 m solution of a nonvolatile solute in benzene?

Solution

Use the equation relating boiling point elevation to solute molality to solve this problem in two steps.

This is a diagram with three boxes connected with two arrows pointing to the right. The first box is labeled, “Molality of solution,” followed by an arrow labeled, “1,” pointing to a second box labeled, “Change in boiling point,” followed by an arrow labeled, “2,” pointing to a third box labeled, “New boiling point.”
  1. Calculate the change in boiling point.
    Δ T b = K b m = 2.53 ° C m −1 × 0.33 m = 0.83 ° C
  2. Add the boiling point elevation to the pure solvent’s boiling point.
    Boiling temperature = 80.1 ° C + 0.83 ° C = 80.9 ° C

Check your learning

What is the boiling point of the antifreeze described in [link] ?

Answer:

109.2 °C

Got questions? Get instant answers now!

The boiling point of an iodine solution

Find the boiling point of a solution of 92.1 g of iodine, I 2 , in 800.0 g of chloroform, CHCl 3 , assuming that the iodine is nonvolatile and that the solution is ideal.

Solution

We can solve this problem using four steps.

This is a diagram with five boxes oriented horizontally and linked together with arrows numbered 1 to 4 pointing from each box in succession to the next one to the right. The first box is labeled, “Mass of iodine.” Arrow 1 points from this box to a second box labeled, “Moles of iodine.” Arrow 2 points from this box to to a third box labeled, “Molality of solution.” Arrow labeled 3 points from this box to a fourth box labeled, “Change in boiling point.” Arrow 4 points to a fifth box labeled, “New boiling point.”
  1. Convert from grams to moles of I 2 using the molar mass of I 2 in the unit conversion factor.
    Result: 0.363 mol
  2. Determine the molality of the solution from the number of moles of solute and the mass of solvent, in kilograms.
    Result: 0.454 m
  3. Use the direct proportionality between the change in boiling point and molal concentration to determine how much the boiling point changes.
    Result: 1.65 °C
  4. Determine the new boiling point from the boiling point of the pure solvent and the change.
    Result: 62.91 °C
    Check each result as a self-assessment.

Check your learning

What is the boiling point of a solution of 1.0 g of glycerin, C 3 H 5 (OH) 3 , in 47.8 g of water? Assume an ideal solution.

Answer:

100.12 °C

Got questions? Get instant answers now!

Distillation of solutions

Distillation is a technique for separating the components of mixtures that is widely applied in both in the laboratory and in industrial settings. It is used to refine petroleum, to isolate fermentation products, and to purify water. This separation technique involves the controlled heating of a sample mixture to selectively vaporize, condense, and collect one or more components of interest. A typical apparatus for laboratory-scale distillations is shown in [link] .

Figure a contains a photograph of a common laboratory distillation unit. Figure b provides a diagram labeling typical components of a laboratory distillation unit, including a stirrer/heat plate with heat and stirrer speed control, a heating bath of oil or sand, stirring means such as boiling chips, a still pot, a still head, a thermometer for boiling point temperature reading, a condenser with a cool water inlet and outlet, a still receiver with a vacuum or gas inlet, a receiving flask for holding distillate, and a cooling bath.
A typical laboratory distillation unit is shown in (a) a photograph and (b) a schematic diagram of the components. (credit a: modification of work by “Rifleman82”/Wikimedia commons; credit b: modification of work by “Slashme”/Wikimedia Commons)

Oil refineries use large-scale fractional distillation to separate the components of crude oil. The crude oil is heated to high temperatures at the base of a tall fractionating column , vaporizing many of the components that rise within the column. As vaporized components reach adequately cool zones during their ascent, they condense and are collected. The collected liquids are simpler mixtures of hydrocarbons and other petroleum compounds that are of appropriate composition for various applications (e.g., diesel fuel, kerosene, gasoline), as depicted in [link] .

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
how do you find theWhat are the wavelengths and energies per photon of two lines
caroline Reply
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
razzyd Reply
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
ifunanya Reply
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Kyndall Reply
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Gabe Reply
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF
Tarun Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask