# 6.4 Colligative properties  (Page 3/30)

 Page 3 / 30
${P}_{\text{A}}={X}_{\text{A}}{P}_{\text{A}}^{°}$

where P A is the partial pressure exerted by component A in the solution, ${P}_{\text{A}}^{°}$ is the vapor pressure of pure A, and X A is the mole fraction of A in the solution. (Mole fraction is a concentration unit introduced in the chapter on gases.)

Recalling that the total pressure of a gaseous mixture is equal to the sum of partial pressures for all its components (Dalton’s law of partial pressures), the total vapor pressure exerted by a solution containing i components is

${P}_{\text{solution}}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\sum _{i}{P}_{i}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\sum _{i}{X}_{i}{P}_{i}^{°}$

A nonvolatile substance is one whose vapor pressure is negligible ( P ° ≈ 0), and so the vapor pressure above a solution containing only nonvolatile solutes is due only to the solvent:

${P}_{\text{solution}}={X}_{\text{solvent}}{P}_{\text{solvent}}^{°}$

## Calculation of a vapor pressure

Compute the vapor pressure of an ideal solution containing 92.1 g of glycerin, C 3 H 5 (OH) 3 , and 184.4 g of ethanol, C 2 H 5 OH, at 40 °C. The vapor pressure of pure ethanol is 0.178 atm at 40 °C. Glycerin is essentially nonvolatile at this temperature.

## Solution

Since the solvent is the only volatile component of this solution, its vapor pressure may be computed per Raoult’s law as:

${P}_{\text{solution}}={X}_{\text{solvent}}{P}_{\text{solvent}}^{°}$

First, calculate the molar amounts of each solution component using the provided mass data.

$\begin{array}{}\\ \\ 92.1\phantom{\rule{0.2em}{0ex}}\overline{)\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{3}{\text{H}}_{5}\left(\text{OH}{\right)}_{3}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\frac{1\phantom{\rule{0.2em}{0ex}}\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{3}{\text{H}}_{5}\left(\text{OH}{\right)}_{3}}{92.094\phantom{\rule{0.2em}{0ex}}\overline{)\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{3}{\text{H}}_{5}\left(\text{OH}{\right)}_{3}}}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}1.00\phantom{\rule{0.2em}{0ex}}\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{3}{\text{H}}_{5}\left(\text{OH}{\right)}_{3}\\ 184.4\phantom{\rule{0.2em}{0ex}}\overline{)\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{2}{\text{H}}_{5}\text{OH}}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\frac{1\phantom{\rule{0.2em}{0ex}}\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{2}{\text{H}}_{5}\text{OH}}{46.069\phantom{\rule{0.2em}{0ex}}\overline{)\text{g}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{2}{\text{H}}_{5}\text{OH}}}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}4.000\phantom{\rule{0.2em}{0ex}}\text{mol}\phantom{\rule{0.2em}{0ex}}{\text{C}}_{2}{\text{H}}_{5}\text{OH}\end{array}$

Next, calculate the mole fraction of the solvent (ethanol) and use Raoult’s law to compute the solution’s vapor pressure.

$\begin{array}{}\\ {X}_{{\text{C}}_{2}{\text{H}}_{5}\text{OH}}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}\frac{4.000\phantom{\rule{0.2em}{0ex}}\text{mol}}{\left(1.00\phantom{\rule{0.2em}{0ex}}\text{mol}+4.000\phantom{\rule{0.2em}{0ex}}\text{mol}\right)}\phantom{\rule{0.2em}{0ex}}=\phantom{\rule{0.2em}{0ex}}0.800\\ {P}_{\text{solv}}={X}_{\text{solv}}{P}_{\text{solv}}^{°}=0.800\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}0.178\phantom{\rule{0.2em}{0ex}}\text{atm}=0.142\phantom{\rule{0.2em}{0ex}}\text{atm}\end{array}$

A solution contains 5.00 g of urea, CO(NH 2 ) 2 (a nonvolatile solute) and 0.100 kg of water. If the vapor pressure of pure water at 25 °C is 23.7 torr, what is the vapor pressure of the solution?

23.4 torr

## Elevation of the boiling point of a solvent

As described in the chapter on liquids and solids, the boiling point of a liquid is the temperature at which its vapor pressure is equal to ambient atmospheric pressure. Since the vapor pressure of a solution is lowered due to the presence of nonvolatile solutes, it stands to reason that the solution’s boiling point will subsequently be increased. Compared to pure solvent, a solution, therefore, will require a higher temperature to achieve any given vapor pressure, including one equivalent to that of the surrounding atmosphere. The increase in boiling point observed when nonvolatile solute is dissolved in a solvent, Δ T b , is called boiling point elevation    and is directly proportional to the molal concentration of solute species:

$\text{Δ}{T}_{\text{b}}={K}_{\text{b}}m$

where K b is the boiling point elevation constant    , or the ebullioscopic constant and m is the molal concentration (molality) of all solute species.

Boiling point elevation constants are characteristic properties that depend on the identity of the solvent. Values of K b for several solvents are listed in [link] .

Boiling Point Elevation and Freezing Point Depression Constants for Several Solvents
Solvent Boiling Point (°C at 1 atm) K b (C m −1 ) Freezing Point (°C at 1 atm) K f (C m −1 )
water 100.0 0.512 0.0 1.86
hydrogen acetate 118.1 3.07 16.6 3.9
benzene 80.1 2.53 5.5 5.12
chloroform 61.26 3.63 −63.5 4.68
nitrobenzene 210.9 5.24 5.67 8.1

how do I set up the problem?
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Abdullahi
hi mam
Mark
find the value of 2x=32
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
yes i wantt to review
Mark
use the y -intercept and slope to sketch the graph of the equation y=6x
how do we prove the quadratic formular
Darius
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
can you teacch how to solve that🙏
Mark
Solve for the first variable in one of the equations, then substitute the result into the other equation. Point For: (6111,4111,−411)(6111,4111,-411) Equation Form: x=6111,y=4111,z=−411x=6111,y=4111,z=-411
Brenna
(61/11,41/11,−4/11)
Brenna
x=61/11 y=41/11 z=−4/11 x=61/11 y=41/11 z=-4/11
Brenna
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years? Kala Reply lim x to infinity e^1-e^-1/log(1+x) given eccentricity and a point find the equiation Moses Reply A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place. Kimberly Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
how do you find theWhat are the wavelengths and energies per photon of two lines
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF