<< Chapter < Page Chapter >> Page >
The ethernet is a network supporting the transfer of packets of information between computers.
The Ethernet architecture consists of a single coaxial cable terminated at either end by a resistor having a value equal tothe cable's characteristic impedance. Computers attach to the Ethernet through an interface known as a transceiver because it sends as well as receives bit streams represented as analog voltages.

Ethernet uses as its communication medium a single length of coaxial cable ( [link] ). This cable serves as the "ether", through which all digital datatravel. Electrically, computers interface to the coaxial cable ( [link] ) through a device known as a transceiver . This device is capable of monitoring the voltage appearing between the core conductor andthe shield as well as applying a voltage to it. Conceptually it consists of two op-amps, one applying a voltage corresponding toa bit stream (transmitting data) and another serving as an amplifier of Ethernet voltage signals (receiving data). Thesignal set for Ethernet resembles that shown in BPSK Signal Sets , with one signal the negative of the other. Computers are attached in parallel, resulting in thecircuit model for Ethernet shown in [link] .

From the viewpoint of a transceiver's sending op-amp, what is the load it sees and what is the transfer functionbetween this output voltage and some other transceiver's receiving circuit? Why should the output resistor R out be large?

The transmitting op-amp sees a load or R out Z 0 R out N , where N is the number of transceivers other than this one attached to thecoaxial cable. The transfer function to some other transceiver's receiver circuit is R out divided by this load.

Got questions? Get instant answers now!
The top circuit expresses a simplified circuit model for a transceiver. The output resistance R out must be much larger than Z 0 so that the sum of the various transmitter voltages add to create the Ethernet conductor-to-shield voltage that serves asthe received signal r t for all transceivers. In this case, the equivalent circuit shown in the bottom circuit applies.

No one computer has more authority than any other to control when and how messages are sent. Without scheduling authority,you might well wonder how one computer sends to another without the (large) interference that the other computers would produceif they transmitted at the same time. The innovation of Ethernet is that computers schedule themselves by a random-access method. This method relies on the fact that all packets transmitted over the coaxial cable can be received by all transceivers, regardless of which computer might actually be the intended recipient. In communications terminology, Ethernetdirectly supports broadcast. Each computer goes through the following steps to send a packet.

  1. The computer senses the voltage across the cable to determine if some other computer is transmitting.
  2. If another computer is transmitting, wait until the transmissions finish and go back to the first step. If thecable has no transmissions, begin transmitting the packet.
  3. If the receiver portion of the transceiver determines that noother computer is also sending a packet, continue transmitting the packet until completion.
  4. On the other hand, if the receiver senses interference from another computer's transmissions, immediately ceasetransmission, waiting a random amount of time to attempt the transmission again (go to step 1) until only one computertransmits and the others defer. The condition wherein two (or more) computers' transmissions interfere with others is knownas a collision .

The reason two computers waiting to transmit may not sense the other's transmission immediately arises because of the finitepropagation speed of voltage signals through the coaxial cable. The longest time any computer must wait to determine ifits transmissions do not encounter interference is 2 L c , where L is the coaxial cable's length. The maximum-length-specification for Ethernet is1 km. Assuming a propagation speed of 2/3 the speed of light, this time interval is more than 10 μs. As analyzed in Problem 22 , the number of these time intervals required to resolve the collision is, on the average, less than two!

Why does the factor of two enter into this equation? (Consider the worst-case situation of two transmittingcomputers located at the Ethernet's ends.)

The worst-case situation occurs when one computer begins to transmit just before the other's packetarrives. Transmitters must sense a collision before packet transmission ends. The time taken for one computer's packetto travel the Ethernet's length and for the other computer's transmission to arrive equals theround-trip, not one-way, propagation time.

Got questions? Get instant answers now!

Thus, despite not having separate communication paths among the computers to coordinate their transmissions, the Ethernet randomaccess protocol allows computers to communicate without only a slight degradation in efficiency, as measured by the time takento resolve collisions relative to the time the Ethernet is used to transmit information.

A subtle consideration in Ethernet is the minimum packet size P min . The time required to transmit such packets equals P min C , where C is the Ethernet's capacity in bps. Ethernet now comes in two differenttypes, each with individual specifications, the most distinguishing of which is capacity: 10 Mbps and 100 Mbps. Ifthe minimum transmission time is such that the beginning of the packet has not propagated the full length of the Ethernet beforethe end-of-transmission, it is possible that two computers will begin transmission at the same time and, by the time theirtransmissions cease, the other's packet will not have propagated to the other. In this case, computers in-between the two willsense a collision, which renders both computer's transmissions senseless to them, without the two transmitting computersknowing a collision has occurred at all! For Ethernet to succeed, we must have the minimum packet transmission timeexceed twice the voltage propagation time: P min C 2 L c or

P min 2 L C c
Thus, for the 10 Mbps Ethernet having a 1 km maximum length specification, the minimum packet size is 200 bits.

The 100 Mbps Ethernet was designed more recently than the 10 Mbps alternative. To maintain the same minimum packet sizeas the earlier, slower version, what should its length specification be? Why should the minimum packet size remainthe same?

The cable must be a factor of ten shorter: It cannot exceed 100 m. Different minimum packet sizes means differentpacket formats, making connecting old and new systems together more complex than need be.

Got questions? Get instant answers now!

Questions & Answers

What is inflation
Bright Reply
a general and ongoing rise in the level of prices in an economy
AI-Robot
What are the factors that affect demand for a commodity
Florence Reply
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask