<< Chapter < Page Chapter >> Page >
A basic analysis of wireless channels and their transfer characteristics.

Wireless channels exploit the prediction made by Maxwell's equation that electromagnetic fields propagate in free spacelike light. When a voltage is applied to an antenna, it creates an electromagnetic field that propagates in all directions(although antenna geometry affects how much power flows in any given direction) that induces electric currents in thereceiver's antenna. Antenna geometry determines how energetic a field a voltage of a given frequency creates. In general terms,the dominant factor is the relation of the antenna's size to the field's wavelength. The fundamental equation relating frequencyand wavelength for a propagating wave is λ f c Thus, wavelength and frequency are inversely related: High frequency corresponds to small wavelengths. For example, a1 MHz electromagnetic field has a wavelength of 300 m. Antennas having a size or distance from the ground comparable tothe wavelength radiate fields most efficiently. Consequently, the lower the frequency the bigger the antenna must be. Becausemost information signals are baseband signals, having spectral energy at low frequencies, they must be modulated to higherfrequencies to be transmitted over wireless channels.

For most antenna-based wireless systems, how the signal diminishes as the receiver moves further from the transmitterderives by considering how radiated power changes with distance from the transmitting antenna. An antenna radiates a givenamount of power into free space, and ideally this power propagates without loss in all directions. Considering a spherecentered at the transmitter, the total power, which is found by integrating the radiated power over the surface of the sphere,must be constant regardless of the sphere's radius. This requirement results from the conservation of energy. Thus, if p d represents the power integrated with respect to direction at a distance d from the antenna, the total power will be p d 4 d 2 . For this quantity to be a constant, we must have p d 1 d 2 which means that the received signal amplitude A R must be proportional to the transmitter's amplitude A T and inversely related to distance from the transmitter.

A R k A T d
for some value of the constant k . Thus, the further from the transmitter the receiver is located,the weaker the received signal. Whereas the attenuation found in wireline channels can be controlled by physical parametersand choice of transmission frequency, the inverse-distance attenuation found in wireless channels persists across allfrequencies.

Why don't signals attenuate according to the inverse-square law in a conductor? What is the difference between the wirelineand wireless cases?

As shown previously , voltages and currents in a wireline channel, which is modeled as a transmission linehaving resistance, capacitance and inductance, decay exponentially with distance. The inverse-square law governsfree-space propagation because such propagation is lossless, with the inverse-square law a consequence of theconservation of power. The exponential decay of wireline channels occurs because they have losses and some filtering.

Got questions? Get instant answers now!

The speed of propagation is governed by the dielectric constant μ 0 and magnetic permeability ε 0 of free space.

c 1 μ 0 ε 0 3 8 m/s
Known familiarly as the speed of light, it sets an upper limit on how fast signals can propagate from one place to another.Because signals travel at a finite speed, a receiver senses a transmitted signal only after a time delay inversely related tothe propagation speed: Δ t d c At the speed of light, a signal travels across the United States in 16 ms, a reasonably small time delay. If a lossless(zero space constant) coaxial cable connected the East and West coasts, this delay would be two to three times longer because ofthe slower propagation speed.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask