<< Chapter < Page Chapter >> Page >
This module introduces the properties of the exponential distribution, the behavior of probabilities that reflect a large number of small values and a small number of high values.

The exponential distribution is often concerned with the amount of time until some specific event occurs. For example, the amount of time (beginning now) until an earthquake occurs has an exponential distribution. Other examples include the length, in minutes, of long distancebusiness telephone calls, and the amount of time, in months, a car battery lasts. It can be shown, too, that the value of the change that you have in your pocket or purse approximately follows anexponential distribution.

Values for an exponential random variable occur in the following way. There are fewer large values and more small values. For example, the amount of money customers spend in one tripto the supermarket follows an exponential distribution. There are more people that spend less money and fewer people that spend large amounts of money.

The exponential distribution is widely used in the field of reliability. Reliability deals with the amount of time a product lasts.

Illustrates the exponential distribution: Let X = amount of time (in minutes) a postal clerk spends with his/her customer. The time is known to have anexponential distribution with the average amount of time equal to 4 minutes.

X is a continuous random variable since time is measured. It is given that μ = 4 minutes. To do any calculations, you must know m , the decay parameter.

m = 1 μ . Therefore, m = 1 4 = 0.25

The standard deviation, σ , is the same as the mean. μ = σ

The distribution notation is X ~ Exp ( m ) size 12{X "~" ital "Exp" \( m \) } {} . Therefore, X ~ Exp ( 0.25 ) size 12{X "~" ital "Exp" \( m \) } {} .

The probability density function is f ( x ) = m e -m⋅x The number e = 2.71828182846... It is a number that is used often in mathematics. Scientific calculators have the key " e x ." If you enter 1 for x , the calculator will display the value e .

The curve is:

f ( x ) = 0.25 e − 0.25⋅x where x is at least 0 and m = 0.25.

For example, f ( 5 ) = 0.25 e − 0.25⋅5 = 0.072

The graph is as follows:

Exponential graph with increments of 2 from 0-20 on the x-axis of μ = 4 and increments of 0.05 from 0.05-0.25 on the y-axis of m = 0.25. The curved line begins at the top at point (0, 0.25) and curves down to point (20, 0). The x-axis is equal to a continuous random variable.

Notice the graph is a declining curve. When x = 0,

f ( x ) = 0.25 e − 0.25⋅0 = 0.25 1 = 0.25 = m

Find the probability that a clerk spends four to five minutes with a randomly selected customer.

Find P ( 4 x 5 ) .

The cumulative distribution function (CDF) gives the area to the left.

P ( x x ) = 1 - e -m⋅x

P ( x 5 ) = 1 - e -0.25⋅5 = 0.7135 and P ( x 4 ) = 1 - e -0.25⋅4 = 0.6321

Exponential graph with the curved line beginning at point (0, 0.25) and curves down towards point (∞, 0). Two vertical upward lines extend from points 4 and 5 to the curved line. The probability is in the area between points 4 and 5.

You can do these calculations easily on a calculator.

The probability that a postal clerk spends four to five minutes with a randomly selected customer is

P ( 4 x 5 ) = P ( x 5 ) - P ( x 4 ) = 0.7135 0.6321 = 0.0814

TI-83+ and TI-84: On the home screen, enter (1-e^(-.25*5))-(1-e^(-.25*4)) or enter e^(-.25*4)-e^(-.25*5).

Half of all customers are finished within how long? (Find the 50th percentile)

Find the 50th percentile.

Exponential graph with the curved line beginning at point (0, 0.25) and curves down towards point (∞, 0). A vertical upward line extends from point k to the curved line. The probability area from 0-k is equal to 0.50.

P ( x k ) 0.50 , k = 2.8 minutes (calculator or computer)

Half of all customers are finished within 2.8 minutes.

You can also do the calculation as follows:

P ( x k ) 0.50 and P ( x k ) = 1 - e -0.25⋅k

Therefore, 0.50 = 1 e −0.25⋅k and e −0.25⋅k = 1 0.50 = 0.5

Take natural logs: ln ( e −0.25⋅k ) = ln ( 0.50 ) . So, −0.25⋅k = ln ( 0.50 )

Solve for k : k = ln(.50) -0.25 = 2.8 minutes

A formula for the percentile k is k = LN(1−AreaToTheLeft) −m where LN is the natural log.
TI-83+ and TI-84: On the home screen, enter LN(1-.50)/-.25. Press the (-) for the negative.

Which is larger, the mean or the median?

Is the mean or median larger?

From part b, the median or 50th percentile is 2.8 minutes. The theoretical mean is 4 minutes. The mean is larger.

Optional collaborative classroom activity

Have each class member count the change he/she has in his/her pocket or purse. Your instructor will record the amounts in dollars and cents. Construct a histogram of the data takenby the class. Use 5 intervals. Draw a smooth curve through the bars. The graph should look approximately exponential. Then calculate the mean.

Let X = the amount of money a student in your class has in his/her pocket or purse.

The distribution for X is approximately exponential with mean, μ = _______ and m = _______. The standard deviation, σ = ________.

Draw the appropriate exponential graph. You should label the x and y axes, the decay rate, and the mean. Shade the area that represents the probability that one student has less than$.40 in his/her pocket or purse. (Shade P ( x 0.40 ) ).

On the average, a certain computer part lasts 10 years. The length of time the computer part lasts is exponentially distributed.

What is the probability that a computer part lasts more than 7 years?

Let x = the amount of time (in years) a computer part lasts.

μ = 10 so m = 1 μ = 1 10 = 0.1

Find P ( x 7 ) . Draw a graph.

P ( x > 7 ) = 1 - P ( x < 7 ) .

Since P ( X x ) = 1 - e -mx then P ( X x ) = 1 - ( 1 - e -m⋅x ) = e -m⋅x

P ( x 7 ) = e -0.1⋅7 = 0.4966 . The probability that a computer part lasts morethan 7 years is 0.4966.

TI-83+ and TI-84: On the home screen, enter e^(-.1*7).

Exponential graph with the curved line beginning at point (0, 0.1) and curves down towards point (∞, 0). A vertical upward line extends from point 1 to the curved line. The probability area occurs from point 1 to the end of the curve. The x-axis is equal to the amount of time a computer part lasts.

On the average, how long would 5 computer parts last if they are used one after another?

On the average, 1 computer part lasts 10 years. Therefore, 5 computer parts, if they are used one right after the other would last, on the average,

( 5 ) ( 10 ) = 50 years.

Eighty percent of computer parts last at most how long?

Find the 80th percentile. Draw a graph. Let k = the 80th percentile.

Exponential graph with the curved line beginning at point (0, 0.1) and curves down towards point (∞, 0). A vertical upward line extends from point k to the curved line. k is the 80th percentile. The probability area from 0-k is equal to 0.80.

Solve for k : k = ln(1-.80) -0.1 = 16.1 years

Eighty percent of the computer parts last at most 16.1 years.

TI-83+ and TI-84: On the home screen, enter LN(1 - .80)/-.1

What is the probability that a computer part lasts between 9 and 11 years?

Find P ( 9 x 11 ) . Draw a graph.

Exponential graph with the curved line beginning at point (0, 0.1) and curves down towards point (∞, 0). Two vertical upward lines extend from point 9 and 11 to the curved line. The probability area occurs between point 9 and 11.

P ( 9 x 11 ) P ( x 11 ) - P ( x 9 ) ( 1 - e −0.1⋅11 ) - ( 1 - e −0.1⋅9 ) = 0.6671 - 0.5934 = 0.0737 . (calculator or computer)

The probability that a computer part lasts between 9 and 11 years is 0.0737.

TI-83+ and TI-84: On the home screen, enter e^(-.1*9) - e^(-.1*11).

Suppose that the length of a phone call, in minutes, is an exponential random variable with decay parameter = 1 12 . If another person arrives at a public telephone just before you, find the probability that you will have to wait more than 5minutes. Let X = the length of a phone call, in minutes.

What is m , μ , and σ ? The probability that you must wait more than 5 minutes is _______ .

  • m = 1 12
  • μ = 12
  • σ = 12

P ( x  >  5 )  =  0.6592

A summary for exponential distribution is available in " Summary of The Uniform and Exponential Probability Distributions ".

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Engr 2113 ece math. OpenStax CNX. Aug 27, 2010 Download for free at http://cnx.org/content/col11224/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Engr 2113 ece math' conversation and receive update notifications?

Ask