<< Chapter < Page Chapter >> Page >
The analysis and transfer characteristics of wireline channels.

Wireline channels were the first used for electrical communications in the mid-nineteenth century for the telegraph.Here, the channel is one of several wires connecting transmitter to receiver. The transmitter simply creates a voltage relatedto the message signal and applies it to the wire(s). We must have a circuit—a closed path—that supports current flow. In thecase of single-wire communications, the earth is used as the current's return path. In fact, the term ground for the reference node in circuits originated in single-wire telegraphs. You can imagine that the earth's electricalcharacteristics are highly variable, and they are. Single-wire metallic channels cannot support high-quality signaltransmission having a bandwidth beyond a few hundred Hertz over any appreciable distance.

Coaxial cable cross-section

Coaxial cable consists of one conductor wrapped around the central conductor. This type of cable supports broaderbandwidth signals than twisted pair, and finds use in cable television and Ethernet.

Consequently, most wireline channels today essentially consist of pairs of conducting wires ( [link] ), and the transmitter applies a message-related voltage across the pair. How these pairs of wires arephysically configured greatly affects their transmission characteristics. One example is twisted pair , wherein the wires are wrapped about each other. Telephonecables are one example of a twisted pair channel. Another is coaxial cable , where a concentric conductor surrounds a central wire with a dielectric material in between.Coaxial cable, fondly called "co-ax" by engineers, is what Ethernet uses as its channel. In either case, wireline channelsform a dedicated circuit between transmitter and receiver. As we shall find subsequently, several transmissions can share thecircuit by amplitude modulation techniques; commercial cable TV is an example. These information-carrying circuits are designedso that interference from nearby electromagnetic sources is minimized. Thus, by the time signals arrive at the receiver,they are relatively interference- and noise-free.

Both twisted pair and co-ax are examples of transmission lines , which all have the circuit model shown in [link] for an infinitesimally small length. This circuit model arisesfrom solving Maxwell's equations for the particular transmission line geometry.

Circuit model for a transmission line

The so-called distributed parameter model for two-wire cables has the depicted circuit model structure. Element valuesdepend on geometry and the properties of materials used to construct the transmission line.
The series resistance comes from the conductor used in the wires and from the conductor's geometry.The inductance and the capacitance derive from transmission line geometry, and the parallel conductance from the medium betweenthe wire pair. Note that all the circuit elements have values expressed by the product of a constant times a length; thisnotation represents that element values here have per-unit-length units. For example, the series resistance R has units of ohms/meter. For coaxial cable, the element values depend on the inner conductor's radius r i , the outer radius of the dielectric r d , the conductivity of the conductors σ , and the conductivity σ d , dielectric constant ε d , and magnetic permittivity μ d of the dielectric as
R 1 2 δ σ 1 r d 1 r i
C 2 ε d r d r i G 2 σ d r d r i L μ d 2 r d r i For twisted pair, having a separation d between the conductors that have conductivity σ and common radius r and that are immersed in a medium having dielectric and magnetic properties, the elementvalues are then
R 1 r δ σ
C ε d 2 r G σ d 2 r L μ δ 2 r d 2 r

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask