<< Chapter < Page Chapter >> Page >
A simple diagram of an increasing concave down curve C in vector field F, with no coordinate plane. Towards the top of the curve, the normal n is drawn perpendicular to the curve C. Another arrow F is drawn sharing n’s endpoint. This flux points up and to the right at about a 90-degree angle to n. The arrows in the vector field to the left of n are drawn pointing straight up. The arrows after n point in the same direction as the flux.
The flux of vector field F across curve C is computed by an integral similar to a vector line integral.

We now give a formula for calculating the flux across a curve. This formula is analogous to the formula used to calculate a vector line integral (see [link] ).

Calculating flux across a curve

Let F be a vector field and let C be a smooth curve with parameterization r ( t ) = x ( t ) , y ( t ) , a t b . Let n ( t ) = y ( t ) , x ( t ) . The flux of F across C is

C F · N d s = a b F ( r ( t ) ) · n ( t ) d t

Proof

The proof of [link] is similar to the proof of [link] . Before deriving the formula, note that n ( t ) = y ( t ) , x ( t ) = ( y ( t ) ) 2 + ( x ( t ) ) 2 = r ( t ) . Therefore,

C F · N d s = C F · n ( t ) n ( t ) d s = a b F · n ( t ) n ( t ) r ( t ) d t = a b F ( r ( t ) ) · n ( t ) d t .

Flux across a curve

Calculate the flux of F = 2 x , 2 y across a unit circle oriented counterclockwise ( [link] ).

A unit circle in a vector field in two dimensions. The arrows point away from the origin in a radial pattern. Shorter vectors are near the origin, and longer ones are further away. A unit circle is drawn around the origin to fit the pattern, and arrowheads are drawn on the circle in a counterclockwise manner.
A unit circle in vector field F = 2 x , 2 y .

To compute the flux, we first need a parameterization of the unit circle. We can use the standard parameterization r ( t ) = cos t , sin t , 0 t 2 π . The normal vector to a unit circle is cos t , sin t . Therefore, the flux is

C F · N d s = 0 2 π 2 cos t , 2 sin t · cos t , sin t d t = 0 2 π ( 2 cos 2 t + 2 sin 2 t ) d t = 2 0 2 π ( cos 2 t + sin 2 t ) d t = 2 0 2 π d t = 4 π .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Calculate the flux of F = x + y , 2 y across the line segment from ( 0 , 0 ) to ( 2 , 3 ) , where the curve is oriented from left to right.

3/2

Got questions? Get instant answers now!

Let F ( x , y ) = P ( x , y ) , Q ( x , y ) be a two-dimensional vector field. Recall that integral C F · T d s is sometimes written as C P d x + Q d y . Analogously, flux C F · N d s is sometimes written in the notation C Q d x + P d y , because the unit normal vector N is perpendicular to the unit tangent T . Rotating the vector d r = d x , d y by 90° results in vector d y , d x . Therefore, the line integral in [link] can be written as C −2 y d x + 2 x d y .

Now that we have defined flux, we can turn our attention to circulation. The line integral of vector field F along an oriented closed curve is called the circulation    of F along C . Circulation line integrals have their own notation: C F · T d s . The circle on the integral symbol denotes that C is “circular” in that it has no endpoints. [link] shows a calculation of circulation.

To see where the term circulation comes from and what it measures, let v represent the velocity field of a fluid and let C be an oriented closed curve. At a particular point P , the closer the direction of v ( P ) is to the direction of T ( P ), the larger the value of the dot product v ( P ) · T ( P ) . The maximum value of v ( P ) · T ( P ) occurs when the two vectors are pointing in the exact same direction; the minimum value of v ( P ) · T ( P ) occurs when the two vectors are pointing in opposite directions. Thus, the value of the circulation C v · T d s measures the tendency of the fluid to move in the direction of C .

Calculating circulation

Let F = y , x be the vector field from [link] and let C represent the unit circle oriented counterclockwise. Calculate the circulation of F along C .

We use the standard parameterization of the unit circle: r ( t ) = cos t , sin t , 0 t 2 π . Then, F ( r ( t ) ) = sin t , cos t and r ( t ) = sin t , cos t . Therefore, the circulation of F along C is

C F · T d s = 0 2 π sin t , cos t · sin t , cos t d t = 0 2 π ( sin 2 t + cos 2 t ) d t = 0 2 π d t = 2 π .

Notice that the circulation is positive. The reason for this is that the orientation of C “flows” with the direction of F . At any point along the circle, the tangent vector and the vector from F form an angle of less than 90°, and therefore the corresponding dot product is positive.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
can you provide the details of the parametric equations for the lines that defince doubly-ruled surfeces (huperbolids of one sheet and hyperbolic paraboloid). Can you explain each of the variables in the equations?
Radek Reply
Practice Key Terms 8

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?

Ask