# 6.2 Breakdown of a neural network

 Page 1 / 1
This module breaks down a standard neural network, describing the different parameters, hyper-parameters, and functions that are necessary for building a neural network.

## Cost functions

The different cost functions we explored using were the sigmoid function, rectified linear units (ReLU), and the softmax normalization function.

The sigmoid activation function is the most general nonlinear activation function used in neural networks. Intuition would naively suggest that the activation of a neuron would be well modeled by the step function, but the issue is its non-differentiability. The stochastic gradient descent algorithm requires that activation functions be differentiable. The solution would be to approximate the step function using a smooth function like the sigmoid or the hyperbolic tangent. The issue with the sigmoid function is that its derivative far from the origin is near zero, so if any individual weight on a neuron is very wrong, it is unable to use the gradient to adjust its value. As a result, outlier weights can significantly impact the performance of the network.

The advantage of using rectified linear units is threefold. First, its derivative is a constant (either 0 or 1) making the computation of the gradient much faster. Second, it is a better approximation of how biological neurons fire, in the sense that there is no activation in the absence of stimulation. Third, rectified linear units speed up learning by not being able to fire with zero net excitation. This means that if an excitation fails to overcome a neuron’s bias, the neuron will not fire at all. And when it does fire, the activation is linearly proportional to the excitation. The sigmoid function in comparison allows for some activation to occur with zero and even negative net excitation. However, a lower learning rate needs to be used with ReLU because its zero derivative for a net excitation less than zero means that the neuron effectively stops learning once its net excitation hits zero.

Softmax activation is particularly useful on the output layer, as it normalizes the output. Exponentiating each of the net excitations gives a more dramatic representation of the differences between them. Weak excitations become weaker activations and strong excitations become stronger activations. Everything is then normalized, giving the layer the effect of becoming a decision-maker.

## Activation functions

The different cost functions we explored using for the gradient descent learning algorithm were mean-squared error, cross-entropy, and log-likelihood.

Mean-squared error is the simplest measurement of difference that can be used to good effect in a neural network. It can be used with any activation function and is the more versatile option, though not always the most effective one. One of its shortcomings is that neurons with a sigmoid activation function become saturated quickly and are unable to learn more as a result of the relatively small magnitude of the sigmoid’s derivative far from the origin.

Cross-entropy treats the desired output as some probability distribution and the network’s output as another probability distribution, and measures the distance between the distributions. The main attraction to using cross-entropy is that when used in conjunction with the sigmoid activation function, its gradient is linearly dependent on the error, solving the issue with neurons becoming saturated quickly.

Log likelihood maximizes only the output neuron corresponding to which neuron should be firing. Used in conjunction with a softmax layer, all other output neurons would be minimized as a result of maximizing the desired output neuron. In this sense, a softmax layer has to be used, or the activations of the final layer will be too close together to draw meaningful conclusions.

Stochastic gradient descent is the algorithm used in our network to adjust weights and biases according to the evaluation of the gradient of a given cost function. The gradient determines whether a parameter should increase or decrease and by how much. The learning rate of a network is a constant associated with how much a parameter should travel down its gradient at each reevaluation. In the original algorithm, parameters are updated after each given input. A common practice with neural nets is to only reevaluate the gradient after a so-called minibatch of multiple inputs is passed. This way, the cost function has multiple samples and can better construct a curve, yet the gradient is somewhat different every time it’s evaluated. This introduces some noise into the gradient to make it harder for parameters to get stuck in a local minimum of the gradient.

## Dropout

Overfitting is an issue experienced in networks when neurons are trained to identify specific images in a training set rather than the more general concept that an image represents. Instead of recognizing a 7, the network may only recognize the particular 7s that were in the training data set. To prevent this, we implemented dropout in our network. Random neurons in our interconnected layers were turned off between mini-batches, meaning that certain weights were not able to be used in determining an output. This essentially means that we were training a slightly different network each mini-batch, encouraging more neurons to learn meaningfully, as weights will typically be more fairly distributed. In evaluating the network, all neurons are turned back on and their weights are scaled down by the dropout rate. As a result, neurons are less strongly associated with particular images, and more applicable to a more expansive set of images.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!