# 5.7 Non-right triangles: law of sines

 Page 1 / 10
In this section, you will:
• Use the Law of Sines to solve oblique triangles.
• Find the area of an oblique triangle using the sine function.
• Solve applied problems using the Law of Sines.

Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of elevation measured by the first station is 35 degrees, whereas the angle of elevation    measured by the second station is 15 degrees. How can we determine the altitude of the aircraft? We see in [link] that the triangle formed by the aircraft and the two stations is not a right triangle, so we cannot use what we know about right triangles. In this section, we will find out how to solve problems involving non-right triangles .

## Using the law of sines to solve oblique triangles

In any triangle, we can draw an altitude    , a perpendicular line from one vertex to the opposite side, forming two right triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without first having to create right triangles.

Any triangle that is not a right triangle is an oblique triangle    . Solving an oblique triangle means finding the measurements of all three angles and all three sides. To do so, we need to start with at least three of these values, including at least one of the sides. We will investigate three possible oblique triangle problem situations:

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See [link] .
2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known angles. See [link] .
3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known sides. See [link] .

Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see how this statement is derived by considering the triangle shown in [link] .

Using the right triangle relationships, we know that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\alpha =\frac{h}{b}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta =\frac{h}{a}.\text{\hspace{0.17em}}\text{\hspace{0.17em}}$ Solving both equations for $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ gives two different expressions for $\text{\hspace{0.17em}}h.$

We then set the expressions equal to each other.

Similarly, we can compare the other ratios.

Collectively, these relationships are called the Law of Sines .

$\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{a}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\beta }{b}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\lambda }{c}$

Note the standard way of labeling triangles: angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ (alpha) is opposite side $\text{\hspace{0.17em}}a;\text{\hspace{0.17em}}$ angle $\text{\hspace{0.17em}}\beta \text{\hspace{0.17em}}$ (beta) is opposite side $\text{\hspace{0.17em}}b;\text{\hspace{0.17em}}$ and angle $\text{\hspace{0.17em}}\gamma \text{\hspace{0.17em}}$ (gamma) is opposite side $\text{\hspace{0.17em}}c.\text{\hspace{0.17em}}$ See [link] .

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers are rounded to the nearest tenth, unless otherwise specified.

## Law of sines

Given a triangle with angles and opposite sides labeled as in [link] , the ratio of the measurement of an angle to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions will be equal. The Law of Sines    is based on proportions and is presented symbolically two ways.

$\frac{\mathrm{sin}\text{\hspace{0.17em}}\alpha }{a}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\beta }{b}=\frac{\mathrm{sin}\text{\hspace{0.17em}}\gamma }{c}$
$\frac{a}{\mathrm{sin}\text{\hspace{0.17em}}\alpha }=\frac{b}{\mathrm{sin}\text{\hspace{0.17em}}\beta }=\frac{c}{\mathrm{sin}\text{\hspace{0.17em}}\gamma }$

To solve an oblique triangle, use any pair of applicable ratios.

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
Got questions? Join the online conversation and get instant answers!