There are two main characteristics of a Poisson experiment.
The
Poisson probability distribution gives the probability of a number of events occurring in a
fixed interval of time or space if these events happen with a known average rate and independently of the time since the last event. For example, a book editor might be interested in the number of words spelled incorrectly in a particular book. It might be that, on the average, there are five words spelled incorrectly in 100 pages. The interval is the 100 pages.
The Poisson distribution may be used to approximate the binomial if the probability of success is "small" (such as 0.01) and the number of trials is "large" (such as 1,000). You will verify the relationship in the homework exercises.
n is the number of trials, and
p is the probability of a "success."
The random variable
X = the number of occurrences in the interval of interest.
The average number of loaves of bread put on a shelf in a bakery in a half-hour period is 12. Of interest is the number of loaves of bread put on the shelf in five minutes. The time interval of interest is five minutes. What is the probability that the number of loaves, selected randomly, put on the shelf in five minutes is three?
Let
X = the number of loaves of bread put on the shelf in five minutes. If the average number of loaves put on the shelf in 30 minutes (half-hour) is 12,
then the average number of loaves put on the shelf in five minutes is$\left(\frac{5}{30}\right)$ (12) = 2 loaves of bread.
The probability question asks you to find
P (
x = 3).
Try it
The average number of fish caught in an hour is eight. Of interest is the number of fish caught in 15 minutes. The time interval of interest is 15 minutes. What is the average number of fish caught in 15 minutes?
$\left(\frac{15}{60}\right)$ (8) = 2 fish
A bank expects to receive six bad checks per day, on average. What is the probability of the bank getting fewer than five bad checks on any given day? Of interest is the number of checks the bank receives in one day, so the time interval of interest is one day. Let
X = the number of bad checks the bank receives in one day. If the bank expects to receive six bad checks per day then the average is six checks per day. Write a mathematical statement for the probability question.
P (
x <5)
Try it
An electronics store expects to have ten returns per day on average. The manager wants to know the probability of the store getting fewer than eight returns on any given day. State the probability question mathematically.
P (
x <8)
You notice that a news reporter says "uh," on average, two times per broadcast. What is the probability that the news reporter says "uh" more than two times per broadcast.
This is a Poisson problem because you are interested in knowing the number of times the news reporter says "uh" during a broadcast.
a. What is the interval of interest?
a. one broadcast
b. What is the average number of times the news reporter says "uh" during one broadcast?
b. 2
c. Let
X = ____________. What values does
X take on?
c. Let
X = the number of times the news reporter says "uh" during one broadcast.
x = 0, 1, 2, 3, ...
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest.
Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.?
How this robot is carried to required site of body cell.?
what will be the carrier material and how can be detected that correct delivery of drug is done
Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Receive real-time job alerts and never miss the right job again
Source:
OpenStax, Introduction to statistics i - stat 213 - university of calgary - ver2015revb. OpenStax CNX. Oct 21, 2015 Download for free at http://legacy.cnx.org/content/col11874/1.3
Google Play and the Google Play logo are trademarks of Google Inc.
Notification Switch
Would you like to follow the 'Introduction to statistics i - stat 213 - university of calgary - ver2015revb' conversation and receive update notifications?