<< Chapter < Page Chapter >> Page >

Calculating magnetic force: earth’s magnetic field on a charged glass rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field. To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as shown in [link] .)

The effects of the Earth’s magnetic field on moving charges. Figure a shows a positive charge with a velocity vector due west, a magnetic field line B oriented due north, and a magnetic force vector F straight down. Figure b shows the right hand facing down, with the fingers pointing north with B, the thumb pointing west with v, and force down away from the hand.
A positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is straight down as shown. A negative charge moving in the same direction would feel a force straight up.


We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation F = qvB sin θ size 12{F= ital "qvB""sin"θ} {} to find the force.


The magnetic force is

F = qvb sin θ . size 12{F= ital "qvb""sin"θ} {}

We see that sin θ = 1 size 12{"sin"θ=1} {} , since the angle between the velocity and the direction of the field is 90º size 12{"90" rSup { size 8{ circ } } } {} . Entering the other given quantities yields

F = 20 × 10 –9 C 10 m/s 5 × 10 –5 T = 1 × 10 –11 C m/s N C m/s = 1 × 10 –11 N. alignl { stack { size 12{F= left ("20" times "10" rSup { size 8{ - 9 } } `C right ) left ("10"`"m/s" right ) left (5 times "10" rSup { size 8{ - 5} } `T right )} {} #" "=1 times "10" rSup { size 8{ - "11"} } ` left (C cdot "m/s" right ) left ( { {N} over {C cdot "m/s"} } right )=1 times "10" rSup { size 8{ - "11"} } `N "." {} } } {}


This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit, since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge in a Magnetic Field: Examples and Applications .

Section summary

  • Magnetic fields exert a force on a moving charge q , the magnitude of which is
    F = qvB sin θ , size 12{F= ital "qvB""sin"θ} {}
    where θ size 12{θ} {} is the angle between the directions of v size 12{v} {} and B size 12{B} {} .
  • The SI unit for magnetic field strength B size 12{B} {} is the tesla (T), which is related to other units by
    1 T = 1 N C m/s = 1 N A m .
  • The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the direction of v size 12{v} {} , the fingers in the direction of B size 12{B} {} , and a perpendicular to the palm points in the direction of F size 12{F} {} .
  • The force is perpendicular to the plane formed by v and B size 12{B} {} . Since the force is zero if v size 12{v} {} is parallel to B size 12{B} {} , charged particles often follow magnetic field lines rather than cross them.

Conceptual questions

If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is necessarily zero?


What is the direction of the magnetic force on a positive charge that moves as shown in each of the six cases shown in [link] ?

figure a shows magnetic field line direction symbols with solid circles labeled B out; a velocity vector points down; figure b shows B vectors pointing right and v vector pointing up; figure c shows B in and v to the right; figure d shows B vector pointing right and v vector pointing left; figure e shows B vectors up and v vector into the page; figure f shows B vectors pointing left and v vectors out of the page

(a) Left (West)

(b) Into the page

(c) Up (North)

(d) No force

(e) Right (East)

(f) Down (South)

Repeat [link] for a negative charge.

What is the direction of the velocity of a negative charge that experiences the magnetic force shown in each of the three cases in [link] , assuming it moves perpendicular to B ? size 12{B?} {}

Figure a shows the force vector pointing up and B out of the page. Figure b shows the F vector pointing up and the B vector pointing to the right. Figure c shows the F vector pointing to the left and the B vector pointing into the page.

(a) East (right)

(b) Into page

(c) South (down)

Repeat [link] for a positive charge.

What is the direction of the magnetic field that produces the magnetic force on a positive charge as shown in each of the three cases in the figure below, assuming B size 12{B} {} is perpendicular to v size 12{v} {} ?

Figure a shows a force vector pointing toward the left and a velocity vector pointing up. Figure b shows the force vector pointing into the page and the velocity vector pointing down. Figure c shows the force vector pointing up and the velocity vector pointing to the left.

(a) Into page

(b) West (left)

(c) Out of page

Repeat [link] for a negative charge.

What is the maximum force on an aluminum rod with a 0 . 100 -μC size 12{0 "." "100""-μC"} {} charge that you pass between the poles of a 1.50-T permanent magnet at a speed of 5.00 m/s? In what direction is the force?

7 . 50 × 10 7 N size 12{7 "." "50" times "10" rSup { size 8{ - 7} } " N"} {} perpendicular to both the magnetic field lines and the velocity

(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0 . 500 -μC size 12{0 "." "500""-μC"} {} charge and flies due west at a speed of 660 m/s over the Earth’s south magnetic pole, where the 8 . 00 × 10 5 -T size 12{8 "." "00" times "10" rSup { size 8{ - 5} } "-T"} {} magnetic field points straight up. What are the direction and the magnitude of the magnetic force on the plane? (b) Discuss whether the value obtained in part (a) implies this is a significant or negligible effect.

(a) A cosmic ray proton moving toward the Earth at 5.00 × 10 7 m/s size 12{5 "." "00" times "10" rSup { size 8{7} } `"m/s"} {} experiences a magnetic force of 1 . 70 × 10 16 N size 12{1 "." "70" times "10" rSup { size 8{ - "16"} } `N} {} . What is the strength of the magnetic field if there is a 45º size 12{"45" rSup { size 8{ circ } } } {} angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.

(a) 3 . 01 × 10 5 T size 12{3 "." "01" times "10" rSup { size 8{ - 5} } " T"} {}

(b) This is slightly less then the magnetic field strength of 5 × 10 5 T size 12{5 times "10" rSup { size 8{ - 5} } `T} {} at the surface of the Earth, so it is consistent.

An electron moving at 4 . 00 × 10 3 m/s size 12{4 "." "00" times "10" rSup { size 8{3} } `"m/s"} {} in a 1.25-T magnetic field experiences a magnetic force of 1 . 40 × 10 16 N size 12{1 "." "40" times "10" rSup { size 8{ - "16"} } `N} {} . What angle does the velocity of the electron make with the magnetic field? There are two answers.

(a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1 . 00 × 10 12 N size 12{1 "." "00" times "10" rSup { size 8{ - "12"} } `N} {} . What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in the Earth’s field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity and noting that static is often absent.

(a) 6 . 67 × 10 10 C (taking the Earth’s field to be 5 . 00 × 10 5 T size 12{5 "." "00" times "10" rSup { size 8{ - 5} } " T"} {} )

(b) Less than typical static, therefore difficult

Questions & Answers

are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?