# 5.4 Fractional exponents

 Page 1 / 1
This module provides sample problems designed to develop concepts related to fractional exponents.

On the homework, we demonstrated the rule of negative exponents by building a table. Now, we’re going to demonstrate it another way—by using the rules of exponents.

• ## A

According to the rules of exponents , $\frac{{7}^{3}}{{7}^{5}}$ $7^{\mathrm{\left[ \right]}}$ .
• ## B

But if you write it out and cancel the excess 7s, then $\frac{{7}^{3}}{{7}^{5}}$ = ——.
• ## C

Therefore, since $\frac{{7}^{3}}{{7}^{5}}$ can only be one thing, we conclude that these two things must be equal: write that equation!

Now, we’re going to approach fractional exponents the same way. Based on our rules of exponents , $9^{\left(\frac{1}{2}\right)}^{2}$ =

So, what does that tell us about $9^{\left(\frac{1}{2}\right)}$ ? Well, it is some number that when you square it, you get _______ (*same answer you gave for number 2). So therefore, $9^{\left(\frac{1}{2}\right)}$ itself must be:

Using the same logic, what is $16^{\left(\frac{1}{2}\right)}$ ?

What is $25^{\left(\frac{1}{2}\right)}$ ?

What is $x^{\left(\frac{1}{2}\right)}$ ?

Construct a similar argument to show that $8^{\left(\frac{1}{2}\right)}=2$ .

What is $27^{\left(\frac{1}{3}\right)}$ ?

What is $-1^{\left(\frac{1}{3}\right)}$ ?

What is $x^{\left(\frac{1}{3}\right)}$ ?

What would you expect $x^{\left(\frac{1}{5}\right)}$ to be?

What is $25^{\left(\frac{-1}{2}\right)}$ ? (You have to combine the rules for negative and fractional exponents here!)

Check your answer to #12 on your calculator. Did it come out the way you expected?

OK, we’ve done negative exponents, and fractional exponents—but always with a 1 in the numerator. What if the numerator is not 1?

Using the rules of exponents, $8^{\left(\frac{1}{3}\right)}^{2}=8^{\mathrm{\left[ \right]}}$ .

So that gives us a rule! We know what $8^{\left(\frac{1}{2}\right)}^{2}$ is, so now we know what 8⅔ is.

$8^{\left(\frac{2}{3}\right)}=$

Construct a similar argument to show what $16^{\left(\frac{3}{4}\right)}$ should be.

Check $16^{\left(\frac{3}{4}\right)}$ on your calculator. Did it come out the way you predicted?

Now let’s combine all our rules! For each of the following, say what it means and then say what actual number it is. (For instance, for $9^{\left(\frac{1}{2}\right)}$ you would say it means $\sqrt[]{9}$ so it is 3.)

$8^{\left(\frac{-1}{2}\right)}=$

$8^{\left(\frac{-2}{3}\right)}=$

For these problems, just say what it means. (For instance, $3^{\left(\frac{1}{2}\right)}$ means $\sqrt[]{3}$ , end of story.)

$10^{-4}$

$2^{\left(\frac{-3}{4}\right)}$

$x^{\left(\frac{a}{b}\right)}$

$x^{\left(\frac{\mathrm{-a}}{b}\right)}$

#### Questions & Answers

are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!