# 5.4 Comparison tests  (Page 3/7)

 Page 3 / 7

## Limit comparison test

Let ${a}_{n},\phantom{\rule{0.2em}{0ex}}{b}_{n}\ge 0$ for all $n\ge 1.$

1. If $\underset{n\to \infty }{\text{lim}}{a}_{n}\text{/}{b}_{n}=L\ne 0,$ then $\sum _{n=1}^{\infty }{a}_{n}$ and $\sum _{n=1}^{\infty }{b}_{n}$ both converge or both diverge.
2. If $\underset{n\to \infty }{\text{lim}}{a}_{n}\text{/}{b}_{n}=0$ and $\sum _{n=1}^{\infty }{b}_{n}$ converges, then $\sum _{n=1}^{\infty }{a}_{n}$ converges.
3. If $\underset{n\to \infty }{\text{lim}}{a}_{n}\text{/}{b}_{n}=\infty$ and $\sum _{n=1}^{\infty }{b}_{n}$ diverges, then $\sum _{n=1}^{\infty }{a}_{n}$ diverges.

Note that if ${a}_{n}\text{/}{b}_{n}\to 0$ and $\sum _{n=1}^{\infty }{b}_{n}$ diverges, the limit comparison test gives no information. Similarly, if ${a}_{n}\text{/}{b}_{n}\to \infty$ and $\sum _{n=1}^{\infty }{b}_{n}$ converges, the test also provides no information. For example, consider the two series $\sum _{n=1}^{\infty }1\text{/}\sqrt{n}$ and $\sum _{n=1}^{\infty }1\text{/}{n}^{2}.$ These series are both p -series with $p=1\text{/}2$ and $p=2,$ respectively. Since $p=1\text{/}2>1,$ the series $\sum _{n=1}^{\infty }1\text{/}\sqrt{n}$ diverges. On the other hand, since $p=2<1,$ the series $\sum _{n=1}^{\infty }1\text{/}{n}^{2}$ converges. However, suppose we attempted to apply the limit comparison test, using the convergent $p-\text{series}$ $\sum _{n=1}^{\infty }1\text{/}{n}^{3}$ as our comparison series. First, we see that

$\frac{1\text{/}\sqrt{n}}{1\text{/}{n}^{3}}=\frac{{n}^{3}}{\sqrt{n}}={n}^{5\text{/}2}\to \infty \phantom{\rule{0.2em}{0ex}}\text{as}\phantom{\rule{0.2em}{0ex}}n\to \infty .$

Similarly, we see that

$\frac{1\text{/}{n}^{2}}{1\text{/}{n}^{3}}=n\to \infty \phantom{\rule{0.2em}{0ex}}\text{as}\phantom{\rule{0.2em}{0ex}}n\to \infty .$

Therefore, if ${a}_{n}\text{/}{b}_{n}\to \infty$ when $\sum _{n=1}^{\infty }{b}_{n}$ converges, we do not gain any information on the convergence or divergence of $\sum _{n=1}^{\infty }{a}_{n}.$

## Using the limit comparison test

For each of the following series, use the limit comparison test to determine whether the series converges or diverges. If the test does not apply, say so.

1. $\sum _{n=1}^{\infty }\frac{1}{\sqrt{n}+1}$
2. $\sum _{n=1}^{\infty }\frac{{2}^{n}+1}{{3}^{n}}$
3. $\sum _{n=1}^{\infty }\frac{\text{ln}\left(n\right)}{{n}^{2}}$
1. Compare this series to $\sum _{n=1}^{\infty }\frac{1}{\sqrt{n}}.$ Calculate
$\underset{n\to \infty }{\text{lim}}\phantom{\rule{0.2em}{0ex}}\frac{1\text{/}\left(\sqrt{n}+1\right)}{1\text{/}\sqrt{n}}=\underset{n\to \infty }{\text{lim}}\begin{array}{c}\frac{\sqrt{n}}{\sqrt{n}+1}\\ \phantom{\rule{0.2em}{0ex}}\end{array}=\underset{n\to \infty }{\text{lim}}\phantom{\rule{0.2em}{0ex}}\frac{1\phantom{\rule{0.2em}{0ex}}\text{/}\sqrt{n}}{1+1\text{/}\sqrt{n}}=1.$
By the limit comparison test, since $\sum _{n=1}^{\infty }\frac{1}{\sqrt{n}}$ diverges, then $\sum _{n=1}^{\infty }\frac{1}{\sqrt{n}+1}$ diverges.
2. Compare this series to $\sum _{n=1}^{\infty }{\left(\frac{2}{3}\right)}^{n}.$ We see that
$\underset{n\to \infty }{\text{lim}}\frac{\left({2}^{n}+1\right)\text{/}{3}^{n}}{{2}^{n}\text{/}{3}^{n}}=\underset{n\to \infty }{\text{lim}}\frac{{2}^{n}+1}{{3}^{n}}·\frac{{3}^{n}}{{2}^{n}}=\underset{n\to \infty }{\text{lim}}\frac{{2}^{n}+1}{{2}^{n}}=\underset{n\to \infty }{\text{lim}}\left[1+{\left(\frac{1}{2}\right)}^{n}\right]=1.$

Therefore,
$\underset{n\to \infty }{\text{lim}}\frac{\left({2}^{n}+1\right)\text{/}{3}^{n}}{{2}^{n}\text{/}{3}^{n}}=1.$

Since $\sum _{n=1}^{\infty }{\left(\frac{2}{3}\right)}^{n}$ converges, we conclude that $\sum _{n=1}^{\infty }\frac{{2}^{n}+1}{{3}^{n}}$ converges.
3. Since $\text{ln}\phantom{\rule{0.1em}{0ex}}n compare with $\sum _{n=1}^{\infty }\frac{1}{n}.$ We see that
$\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n\text{/}{n}^{2}}{1\text{/}n}=\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n}{{n}^{2}}·\frac{n}{1}=\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n}{n}.$

In order to evaluate $\underset{n\to \infty }{\text{lim}}\text{ln}\phantom{\rule{0.1em}{0ex}}n\text{/}n,$ evaluate the limit as $x\to \infty$ of the real-valued function $\text{ln}\left(x\right)\text{/}x.$ These two limits are equal, and making this change allows us to use L’Hôpital’s rule. We obtain
$\underset{x\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}x}{x}=\underset{x\to \infty }{\text{lim}}\frac{1}{x}=0.$

Therefore, $\underset{n\to \infty }{\text{lim}}\text{ln}\phantom{\rule{0.1em}{0ex}}n\text{/}n=0,$ and, consequently,
$\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n\text{/}{n}^{2}}{1\text{/}n}=0.$

Since the limit is $0$ but $\sum _{n=1}^{\infty }\frac{1}{n}$ diverges, the limit comparison test does not provide any information.
Compare with $\sum _{n=1}^{\infty }\frac{1}{{n}^{2}}$ instead. In this case,
$\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.2em}{0ex}}n\text{/}{n}^{2}}{1\text{/}{n}^{2}}=\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.2em}{0ex}}n}{{n}^{2}}·\frac{{n}^{2}}{1}=\underset{n\to \infty }{\text{lim}}\text{ln}\phantom{\rule{0.1em}{0ex}}n=\infty .$

Since the limit is $\infty$ but $\sum _{n=1}^{\infty }\frac{1}{{n}^{2}}$ converges, the test still does not provide any information.
So now we try a series between the two we already tried. Choosing the series $\sum _{n=1}^{\infty }\frac{1}{{n}^{3\text{/}2}},$ we see that
$\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n\text{/}{n}^{2}}{1\text{/}{n}^{3\text{/}2}}=\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n}{{n}^{2}}·\frac{{n}^{3\text{/}2}}{1}=\underset{n\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n}{\sqrt{n}}.$

As above, in order to evaluate $\underset{n\to \infty }{\text{lim}}\text{ln}\phantom{\rule{0.1em}{0ex}}n\text{/}\sqrt{n},$ evaluate the limit as $x\to \infty$ of the real-valued function $\text{ln}\phantom{\rule{0.1em}{0ex}}x\text{/}\sqrt{x}.$ Using L’Hôpital’s rule,
$\underset{x\to \infty }{\text{lim}}\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}x}{\sqrt{x}}=\underset{x\to \infty }{\text{lim}}\frac{2\sqrt{x}}{x}=\underset{x\to \infty }{\text{lim}}\frac{2}{\sqrt{x}}=0.$

Since the limit is $0$ and $\sum _{n=1}^{\infty }\frac{1}{{n}^{3\text{/}2}}$ converges, we can conclude that $\sum _{n=1}^{\infty }\frac{\text{ln}\phantom{\rule{0.1em}{0ex}}n}{{n}^{2}}$ converges.

Use the limit comparison test to determine whether the series $\sum _{n=1}^{\infty }\frac{{5}^{n}}{{3}^{n}+2}$ converges or diverges.

The series diverges.

## Key concepts

• The comparison tests are used to determine convergence or divergence of series with positive terms.
• When using the comparison tests, a series $\sum _{n=1}^{\infty }{a}_{n}$ is often compared to a geometric or p -series.

Use the comparison test to determine whether the following series converge.

$\sum _{n=1}^{\infty }{a}_{n}$ where ${a}_{n}=\frac{2}{n\left(n+1\right)}$

$\sum _{n=1}^{\infty }{a}_{n}$ where ${a}_{n}=\frac{1}{n\left(n+1\text{/}2\right)}$

Converges by comparison with $1\text{/}{n}^{2}.$

what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Abdul      By  By By By