<< Chapter < Page Chapter >> Page >
A graph is shown where the x-axis is labeled “Temperature ( degree sign, C )” and has values of 200 to 1000 in increments of 200 and the y-axis is labeled “Pressure ( k P a )” and has values of 20 to 120 in increments of 20. A horizontal dotted line extends across the graph at point 780 on the y-axis while three vertical dotted lines extend from points 35, 78, and 100 to meet the horizontal dotted line. Four lines are graphed. The first line, labeled “ethyl ether,” begins at the point “0 , 200” and extends in a slight curve to point “45, 1000” while the second line, labeled “ethanol”, extends from point “0, 20” to point “88, 1000” in a more extreme curve. The third line, labeled “water,” begins at the point “0, 0” and extends in a curve to point “108, 1000” while the fourth line, labeled “ethylene glycol,” extends from point “80, 0” to point “140, 100” in a very shallow curve.
The boiling points of liquids are the temperatures at which their equilibrium vapor pressures equal the pressure of the surrounding atmosphere. Normal boiling points are those corresponding to a pressure of 1 atm (101.3 kPa.)

A boiling point at reduced pressure

A typical atmospheric pressure in Leadville, Colorado (elevation 10,200 feet) is 68 kPa. Use the graph in [link] to determine the boiling point of water at this elevation.

Solution

The graph of the vapor pressure of water versus temperature in [link] indicates that the vapor pressure of water is 68 kPa at about 90 °C. Thus, at about 90 °C, the vapor pressure of water will equal the atmospheric pressure in Leadville, and water will boil.

Check your learning

The boiling point of ethyl ether was measured to be 10 °C at a base camp on the slopes of Mount Everest. Use [link] to determine the approximate atmospheric pressure at the camp.

Answer:

Approximately 40 kPa (0.4 atm)

Got questions? Get instant answers now!

The quantitative relation between a substance’s vapor pressure and its temperature is described by the Clausius-Clapeyron equation    :

P = A e Δ H vap / R T

where Δ H vap is the enthalpy of vaporization for the liquid, R is the gas constant, and ln A is a constant whose value depends on the chemical identity of the substance. This equation is often rearranged into logarithmic form to yield the linear equation:

ln P = Δ H vap R T + ln A

This linear equation may be expressed in a two-point format that is convenient for use in various computations, as demonstrated in the example exercises that follow. If at temperature T 1 , the vapor pressure is P 1 , and at temperature T 2 , the vapor pressure is T 2 , the corresponding linear equations are:

ln P 1 = Δ H vap R T 1 + ln A and ln P 2 = Δ H vap R T 2 + ln A

Since the constant, ln A , is the same, these two equations may be rearranged to isolate ln A and then set them equal to one another:

ln P 1 + Δ H vap R T 1 = ln P 2 + Δ H vap R T 2

which can be combined into:

ln ( P 2 P 1 ) = Δ H vap R ( 1 T 1 1 T 2 )

Estimating enthalpy of vaporization

Isooctane (2,2,4-trimethylpentane) has an octane rating of 100. It is used as one of the standards for the octane-rating system for gasoline. At 34.0 °C, the vapor pressure of isooctane is 10.0 kPa, and at 98.8 °C, its vapor pressure is 100.0 kPa. Use this information to estimate the enthalpy of vaporization for isooctane.

Solution

The enthalpy of vaporization, Δ H vap , can be determined by using the Clausius-Clapeyron equation:

ln ( P 2 P 1 ) = Δ H vap R ( 1 T 1 1 T 2 )

Since we have two vapor pressure-temperature values ( T 1 = 34.0 °C = 307.2 K, P 1 = 10.0 kPa and T 2 = 98.8 °C = 372.0 K, P 2 = 100 kPa), we can substitute them into this equation and solve for Δ H vap . Rearranging the Clausius-Clapeyron equation and solving for Δ H vap yields:

Δ H vap = R ln ( P 2 P 1 ) ( 1 T 1 1 T 2 ) = ( 8.3145 J/mol K ) ln ( 100 kPa 10.0 kPa ) ( 1 307.2 K 1 372.0 K ) = 33,800 J/mol = 33.8 kJ/mol

Note that the pressure can be in any units, so long as they agree for both P values, but the temperature must be in kelvin for the Clausius-Clapeyron equation to be valid.

Check your learning

At 20.0 °C, the vapor pressure of ethanol is 5.95 kPa, and at 63.5 °C, its vapor pressure is 53.3 kPa. Use this information to estimate the enthalpy of vaporization for ethanol.

Answer:

47,782 J/mol = 47.8 kJ/mol

Got questions? Get instant answers now!

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?

Ask