<< Chapter < Page Chapter >> Page >
Analog-to-digital conversion.

The Sampling Theorem says that if we sample a bandlimitedsignal s t fast enough, it can be recovered without error from its samples s n T s , n -1 0 1 . Sampling is only the first phase of acquiring data into acomputer: Computational processing further requires that the samples be quantized : analog values are converted into digital form. In short, we will have performed analog-to-digital (A/D) conversion .

A three-bit A/D converter assigns voltage in the range -1 1 to one of eight integers between 0 and 7. For example, allinputs having values lying between 0.5 and 0.75 are assigned the integer value six and, upon conversion back to an analogvalue, they all become 0.625. The width of a single quantization interval Δ equals 2 2 B . The bottom panel shows a signal going through theanalog-to-digital converter, where B is the number of bits used in the A/D conversion process (3 inthe case depicted here). First it is sampled, then amplitude-quantized to three bits. Note how the sampledsignal waveform becomes distorted after amplitude quantization. For example the two signal values between 0.5and 0.75 become 0.625. This distortion is irreversible; it can be reduced (but not eliminated) by using more bits inthe A/D converter.

A phenomenon reminiscent of the errors incurred in representing numbers on a computer prevents signal amplitudesfrom being converted with no error into a binary number representation. In analog-to-digital conversion, the signal isassumed to lie within a predefined range. Assuming we can scale the signal without affecting the information itexpresses, we'll define this range to be 1 1 . Furthermore, the A/D converter assigns amplitude values inthis range to a set of integers. A B -bit converter produces one of the integers 0 1 2 B 1 for each sampled input. [link] shows how a three-bit A/D converter assigns input values tothe integers.We define a quantization interval to be the range of values assigned to the same integer. Thus, for our examplethree-bit A/D converter, the quantization interval Δ is 0.25 ; in general, it is 2 2 B .

Recalling the plot of average daily highs in this frequency domain problem , why is this plot so jagged? Interpret this effect interms of analog-to-digital conversion.

The plotted temperatures were quantized to the nearest degree. Thus, the high temperature's amplitude wasquantized as a form of A/D conversion.

Got questions? Get instant answers now!

Because values lying anywhere within a quantization interval are assigned the same value for computer processing, the original amplitude value cannot be recovered without error . Typically, the D/A converter, the device that converts integers to amplitudes, assigns anamplitude equal to the value lying halfway in the quantization interval. The integer 6 would be assigned to the amplitude0.625 in this scheme. The error introduced by converting a signal fromanalog to digital form by sampling and amplitude quantization then back again would be half the quantizationinterval for each amplitude value. Thus, the so-called A/D error equals half the width of a quantization interval: 1 2 B . As we have fixed the input-amplitude range, the more bitsavailable in the A/D converter, the smaller the quantization error.

To analyze the amplitude quantization error more deeply, we need to compute the signal-to-noise ratio, which equals the ratio of the signal power and the quantizationerror power. Assuming the signal is a sinusoid, the signal power is the square of the rms amplitude: power s 1 2 2 1 2 . The illustration details a single quantization interval.

A single quantization interval is shown, along with atypical signal's value before amplitude quantization s n T s and after Q s n T s . ε denotes the error thus incurred.
Its width is Δ and the quantization error is denoted by ε . To find the power in the quantization error, we note that no matter into whichquantization interval the signal's value falls, the error will have the same characteristics. To calculate the rms value, wemust square the error and average it over the interval.
rms ε 1 Δ ε Δ 2 Δ 2 ε 2 Δ 2 12 1 2
Since the quantization interval width for a B -bit converter equals 2 2 B 2 B 1 , we find that the signal-to-noise ratio for theanalog-to-digital conversion process equals
SNR 1 2 2 2 B 1 12 3 2 2 2 B 6 B 10 10 logbase --> 1.5 dB
Thus, every bit increase in the A/D converter yields a 6 dB increase in the signal-to-noise ratio.The constant term 10 10 logbase --> 1.5 equals 1.76.

This derivation assumed the signal's amplitude lay in the range -1 1 . What would the amplitude quantization signal-to-noiseratio be if it lay in the range A A ?

The signal-to-noise ratio does not depend on the signal amplitude. With an A/D range of A A , the quantization interval Δ 2 A 2 B and the signal's rms value (again assuming it is a sinusoid) is A 2 .

Got questions? Get instant answers now!

How many bits would be required in the A/D converter to ensure that the maximum amplitude quantization error wasless than 60 db smaller than the signal's peak value?

Solving 2 B .001 results in B 10 bits.

Got questions? Get instant answers now!

Music on a CD is stored to 16-bit accuracy. To what signal-to-noise ratio does this correspond?

A 16-bit A/D converter yields a SNR of 6 16 10 10 logbase --> 1.5 97.8 dB.

Got questions? Get instant answers now!

Once we have acquired signals with an A/D converter, we canprocess them using digital hardware or software. It can be shown that if the computer processing is linear, the result ofsampling, computer processing, and unsampling is equivalent to some analog linear system. Why go to all the bother if thesame function can be accomplished using analog techniques? Knowing when digital processing excels and when it does not isan important issue.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask