# 5.2 Kinetic energy and the work-energy theorem (2d)  (Page 2/6)

 Page 2 / 6
${W}_{\text{net}}={F}_{\text{net}}d.$

The effect of the net force ${\mathbf{F}}_{\text{net}}$ is to accelerate the package from ${v}_{0}$ to $v$ . The kinetic energy of the package increases, indicating that the net work done on the system is positive. (See [link] .) By using Newton’s second law, and doing some algebra, we can reach an interesting conclusion. Substituting ${F}_{\text{net}}=\text{ma}$ from Newton’s second law gives

${W}_{\text{net}}=\text{mad.}$

To get a relationship between net work and the speed given to a system by the net force acting on it, we take $d=x-{x}_{0}$ and use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a distance $d$ if the acceleration has the constant value $a$ ; namely, ${v}^{2}={{v}_{0}}^{2}+2\text{ad}$ (note that $a$ appears in the expression for the net work). Solving for acceleration gives $a=\frac{{v}^{2}-{{v}_{0}}^{2}}{2d}$ . When $a$ is substituted into the preceding expression for ${W}_{\text{net}}$ , we obtain

${W}_{\text{net}}=m\left(\frac{{v}^{2}-{{v}_{0}}^{2}}{2d}\right)d.$

The $d$ cancels, and we rearrange this to obtain

This expression is called the work-energy theorem    , and it actually applies in general (even for forces that vary in direction and magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem implies that the net work on a system equals the change in the quantity $\frac{1}{2}{\text{mv}}^{2}$ . This quantity is our first example of a form of energy.

## The work-energy theorem

The net work on a system equals the change in the quantity $\frac{1}{2}{\text{mv}}^{2}$ .

The quantity $\frac{1}{2}{\text{mv}}^{2}$ in the work-energy theorem is defined to be the translational kinetic energy    (KE) of a mass $m$ moving at a speed $v$ . ( Translational kinetic energy is distinct from rotational kinetic energy, which is considered later.) In equation form, the translational kinetic energy,

$\text{KE}=\frac{1}{2}{\text{mv}}^{2},$

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle, single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a car or the package in [link] , up to speed, but it may be a bit surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at 100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We will now consider a series of examples to illustrate various aspects of work and energy.

## Calculating the kinetic energy of a package

Suppose a 30.0-kg package on the roller belt conveyor system in [link] is moving at 0.500 m/s. What is its kinetic energy?

Strategy

Because the mass $m$ and speed $v$ are given, the kinetic energy can be calculated from its definition as given in the equation $\text{KE}=\frac{1}{2}{\text{mv}}^{2}$ .

Solution

The kinetic energy is given by

$\text{KE}=\frac{1}{2}{\text{mv}}^{2}\text{.}$

Entering known values gives

$\text{KE}=0\text{.}5\left(\text{30.0 kg}\right)\left(\text{0.500 m/s}{\right)}^{2},$

which yields

$\text{KE}=\text{3.75 kg}\cdot {m}^{2}{\text{/s}}^{2}=\text{3.75 J.}$

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This fact is consistent with the observation that people can move packages like this without exhausting themselves.

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!