<< Chapter < Page Chapter >> Page >

Analysis of the lms algorithm

It is important to analyze the LMS algorithm to determine under what conditions it is stable, whether or not it convergesto the Wiener solution, to determine how quickly it converges, how much degredation is suffered due to the noisy gradient,etc. In particular, we need to know how to choose the parameter .

Mean of w

does W k , k approach the Wiener solution? (since W k is always somewhat random in the approximate gradient-based LMS algorithm, we ask whether the expectedvalue of the filter coefficients converge to the Wiener solution)

W k + 1 W k + 1 W k 2 k X k W k 2 d k X k 2 W k X k X k W k 2 P 2 W k X k X k

Patently false assumption

X k and X k - i , X k and d k - i , and d k and d k - i are statistically independent, i 0 . This assumption is obviously false, since X k - 1 is the same as X k except for shifting down the vector elements one place and adding one new sample. We make this assumptionbecause otherwise it becomes extremely difficult to analyze the LMS algorithm. (First good analysis not makingthis assumption: Macchi and Eweda ) Many simulations and much practical experience has shown that the results one obtains withanalyses based on the patently false assumption above are quite accurate in most situations

With the independence assumption, W k (which depends only on previous X k - i , d k - i ) is statitically independent of X k , and we can simplify W k X k X k

Now W k X k X k is a vector, and

W k X k X k i M 1 0 w i k x k - i x k - j i M 1 0 w i k x k - i x k - j i M 1 0 w i k x k - i x k - j i M 1 0 w i k r xx i j R W k
where R X k X k is the data correlation matrix.

Putting this back into our equation

W k + 1 W k 2 P 2 R W k I 2 R W k 2 P
Now if W k converges to a vector of finite magnitude ("convergence in the mean"), what does it converge to?

If W k converges, then as k , W k + 1 W k , and W I 2 R W 2 P 2 R W 2 P R W P or W opt R P the Wiener solution!

So the LMS algorithm, if it converges, gives filter coefficients which on average arethe Wiener coefficients! This is, of course, a desirable result.

First-order stability

But does W k converge, or under what conditions?

Let's rewrite the analysis in term of V k , the "mean coefficient error vector" V k W k W opt , where W opt is the Wiener filter W k + 1 W k 2 R W k 2 P W k + 1 W opt W k W opt 2 R W k 2 R W opt 2 R W opt 2 P V k + 1 V k 2 R V k 2 R W opt 2 P Now W opt R P , so V k + 1 V k 2 R V k 2 R R P 2 P I 2 R V k We wish to know under what conditions V k 0 ?

Linear algebra fact

Since R is positive definite, real, and symmetric, all the eigenvalues arereal and positive. Also, we can write R as Q Q , where is a diagonal matrix with diagonal entries i equal to the eigenvalues of R , and Q is a unitary matrix with rows equal to the eigenvectors corresponding to theeigenvalues of R .

Using this fact, V k + 1 I 2 Q Q V k multiplying both sides through on the left by Q : we get Q V k + 1 Q 2 Q V k 1 2 Q V k Let V ' Q V : V ' k + 1 1 2 V ' k Note that V ' is simply V in a rotated coordinate set in m , so convergence of V ' implies convergence of V .

Since 1 2 is diagonal, all elements of V ' evolve independently of each other. Convergence (stability) bolis down to whether all M of these scalar, first-order difference equations are stable, and thus 0 . i i

    1 2 M
V i ' k + 1 1 2 i V i ' k These equations converge to zero if 1 2 i 1 , or i i 1 and i are positive, so we require i 1 i so for convergence in the mean of the LMS adaptive filter, we require
1 max
This is an elegant theoretical result, but in practice, we may not know max , it may be time-varying, and we certainly won't want to compute it. However, another useful mathematicalfact comes to the rescue... tr R i 1 M r ii i 1 M i max Since the eigenvalues are all positive and real.

For a correlation matrix, i i 1 M r ii r 0 . So tr R M r 0 M x k x k . We can easily estimate r 0 with O 1 computations/sample, so in practice we might require 1 M r 0 as a conservative bound, and perhaps adapt accordingly with time.

Rate of convergence

Each of the modes decays as 1 2 i k

The initial rate of convergence is dominated by the fastest mode 1 2 max . This is not surprising, since a dradient descent method goes "downhill" in the steepest direction
The final rate of convergence is dominated by the slowest mode 1 2 min . For small min , it can take a long time for LMS to converge.
Note that the convergence behavior depends on the data (via R ). LMS converges relatively quickly for roughly equal eigenvalues. Unequaleigenvalues slow LMS down a lot.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of signal processing. OpenStax CNX. Nov 26, 2012 Download for free at http://cnx.org/content/col10360/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of signal processing' conversation and receive update notifications?

Ask