<< Chapter < Page Chapter >> Page >

A typical corporation is full of frightening examples of overhead. Say your department has prepared a stack of paperwork to be completed by another department. What do you have to do to transfer that work? First, you have to be sure that your portion is completed; you can’t ask them to take over if the materials they need aren’t ready. Next, you need to package the materials — data, forms, charge numbers, and the like. And finally comes the official transfer. Upon receiving what you sent, the other department has to unpack it, do their job, repackage it, and send it back.

A lot of time gets wasted moving work between departments. Of course, if the overhead is minimal compared to the amount of useful work being done, it won’t be that big a deal. But it might be more efficient for small jobs to stay within one department. The same is true of subroutine and function calls. If you only enter and exit modules once in a relative while, the overhead of saving registers and preparing argument lists won’t be significant. However, if you are repeatedly calling a few small subroutines, the overhead can buoy them to the top of the profile. It might be better if the work stayed where it was, in the calling routine.

Additionally, subroutine calls inhibit compiler flexibility. Given the right opportunity, you’d like your compiler to have the freedom to intermix instructions that aren’t dependent upon each other. These are found on either side of a subroutine call, in the caller and callee. But the opportunity is lost when the compiler can’t peer into subroutines and functions. Instructions that might overlap very nicely have to stay on their respective sides of the artificial fence.

It helps if we illustrate the challenge that subroutine boundaries present with an exaggerated example. The following loop runs very well on a wide range of processors:


DO I=1,N A(I) = A(I) + B(I) * CENDDO

The code below performs the same calculations, but look at what we have done:


DO I=1,N CALL MADD (A(I), B(I), C)ENDDO SUBROUTINE MADD (A,B,C)A = A + B * C RETURNEND

Each iteration calls a subroutine to do a small amount of work that was formerly within the loop. This is a particularly painful example because it involves floating- point calculations. The resulting loss of parallelism, coupled with the procedure call overhead, might produce code that runs 100 times slower. Remember, these operations are pipelined, and it takes a certain amount of “wind-up” time before the throughput reaches one operation per clock cycle. If there are few floating-point operations to perform between subroutine calls, the time spent winding up and winding down pipelines figures prominently.

Subroutine and function calls complicate the compiler’s ability to efficiently man- age COMMON and external variables, delaying until the last possible moment actually storing them in memory. The compiler uses registers to hold the “live” values of many variables. When you make a call, the compiler cannot tell whether the subroutine will be changing variables that are declared as external or COMMON . Therefore, it’s forced to store any modified external or COMMON variables back into memory so that the callee can find them. Likewise, after the call has returned, the same variables have to be reloaded into registers because the compiler can no longer trust the old, register-resident copies. The penalty for saving and restoring variables can be substantial, especially if you are using lots of them. It can also be unwarranted if variables that ought to be local are specified as external or COMMON , as in the following code:

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, High performance computing. OpenStax CNX. Aug 25, 2010 Download for free at http://cnx.org/content/col11136/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'High performance computing' conversation and receive update notifications?

Ask