# 5.1 Solving equations  (Page 2/2)

 Page 2 / 2

$x+1=10$

conditional, $x=9$

$y-4=7$

conditional, $y=11$

$5a=25$

conditional, $a=5$

$\frac{x}{4}=9$

conditional, $x=36$

$\frac{18}{b}=6$

conditional, $b=3$

$y-2=y-2$

identity

$x+4=x-3$

$x+x+x=3x$

identity

$8x=0$

conditional, $x=0$

$m-7=-5$

conditional, $m=2$

## Literal equations

Some equations involve more than one variable. Such equations are called literal equations .

An equation is solved for a particular variable if that variable alone equals an expression that does not contain that particular variable.

## The following equations are examples of literal equations.

1. $y=2x+7$ . It is solved for $y$ .
2. $d=rt$ . It is solved for $d$ .
3. $I=prt$ . It is solved for $I$ .
4. $z=\frac{x-u}{s}$ . It is solved for $z$ .
5. $y+1=x+4$ . This equation is not solved for any particular variable since no variable is isolated.

## Solving equation of the form $x+a=b\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}x-a=b$

Recall that the equal sign of an equation indicates that the number represented by the expression on the left side is the same as the number represented by the expression on the right side.

$\begin{array}{ccc}\text{This}& \text{is}\text{\hspace{0.17em}}\text{​}\text{the}& \text{this}\\ \text{number}& \text{same}\text{\hspace{0.17em}}\text{as}& \text{number}\\ ↓& ↓& ↓\\ x& =& 6\\ x+2& =& 8\\ x-1& =& 5\end{array}$

## This suggests the following procedures:

1. We can obtain an equivalent equation (an equation having the same solutions as the original equation) by adding the same number to both sides of the equation.
2. We can obtain an equivalent equation by subtracting the same number from both sides of the equation.

We can use these results to isolate $x$ , thus solving for $x$ .

## Solving $x+a=b$ For $x$

$\begin{array}{llll}\hfill x+a& =\hfill & b\hfill & \text{The}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{associated}\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{addition}\text{.}\text{\hspace{0.17em}}\text{Undo}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{association}\hfill \\ \hfill x+a-a& =\hfill & b-a\hfill & \text{by}\text{\hspace{0.17em}}\text{subtracting}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}both\text{\hspace{0.17em}}\text{sides}\text{.}\hfill \\ \hfill x+0& =\hfill & b-a\hfill & a-a=0\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{additive}\text{\hspace{0.17em}}\text{identity}\text{.}\text{\hspace{0.17em}}x+0=x.\hfill \\ \hfill x& =\hfill & b-a\hfill & \text{This}\text{\hspace{0.17em}}\text{equation}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{equivalent}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{first}\text{\hspace{0.17em}}\text{equation,}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{it}\text{\hspace{0.17em}}\text{is}\hfill \\ \hfill & \hfill & \hfill & \text{solved}\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}x.\hfill \end{array}$

## Solving $x-a=b$ For $x$

$\begin{array}{llll}\hfill x-a& =\hfill & b\hfill & \text{The}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{associated}\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{subtraction}\text{.}\text{\hspace{0.17em}}\text{Undo}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{association}\hfill \\ \hfill x-a+a& =\hfill & b+a\hfill & \text{by}\text{\hspace{0.17em}}\text{adding}\text{\hspace{0.17em}}a\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}both\text{\hspace{0.17em}}\text{sides}\text{.}\hfill \\ \hfill x+0& =\hfill & b+a\hfill & -a+a=0\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{additive}\text{\hspace{0.17em}}\text{identity}\text{.}\text{\hspace{0.17em}}x+0=x.\hfill \\ \hfill x& =\hfill & b+a\hfill & \text{This}\text{\hspace{0.17em}}\text{equation}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{equivalent}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{first}\text{\hspace{0.17em}}\text{equation,}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{it}\text{\hspace{0.17em}}\text{is}\hfill \\ \hfill & \hfill & \hfill & \text{solved}\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}x.\hfill \end{array}$

## Method for solving $x+a=b$ And $x-a=b$ For $x$

To solve the equation $x+a=b$ for $x$ , subtract $a$ from both sides of the equation.
To solve the equation $x-a=b$ for $x$ , add $a$ to both sides of the equation.

## Sample set b

Solve $x+7=10$ for $x$ .

$\begin{array}{llll}\hfill x+7& =\hfill & 10\hfill & 7\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{associated}\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{addition}\text{.}\text{\hspace{0.17em}}\text{Undo}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{association}\text{\hspace{0.17em}}\hfill \\ \hfill x+7-7& =\hfill & 10-7\hfill & \text{by}\text{\hspace{0.17em}}\text{subtracting}\text{\hspace{0.17em}}7\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}both\text{\hspace{0.17em}}\text{sides}\text{.}\hfill \\ \hfill x+0& =\hfill & 3\hfill & 7-7=0\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{additive}\text{\hspace{0.17em}}\text{identity}.\text{\hspace{0.17em}}x+0=x.\hfill \\ \hfill x& =\hfill & 3\hfill & x\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{isolated,}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{equation}\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{equivalent}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}\text{the}\hfill \\ \hfill & \hfill & \hfill & \text{original}\text{\hspace{0.17em}}\text{equation}\text{\hspace{0.17em}}x+7=10.\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{Therefore,}\text{\hspace{0.17em}}\text{these}\text{\hspace{0.17em}}\text{two}\hfill \\ \hfill & \hfill & \hfill & \text{equation}\text{\hspace{0.17em}}\text{have}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{same}\text{\hspace{0.17em}}\text{solution}\text{.}\text{\hspace{0.17em}}\text{The}\text{\hspace{0.17em}}\text{solution}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}x=3\hfill \\ \hfill & \hfill & \hfill & \text{is}\text{\hspace{0.17em}}\text{clearly}\text{\hspace{0.17em}}3.\text{\hspace{0.17em}}\text{Thus,}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{solution}\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}x+7=10\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{also}\text{\hspace{0.17em}}3.\hfill \end{array}$

Check : Substitute 3 for $x$ in the original equation. $\begin{array}{llll}\hfill x+7& \text{=}\hfill & 10\hfill & \hfill \\ \hfill 3+7& \text{=}\hfill & 10\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill 10& \text{=}\hfill & 10\hfill & \text{Yes,}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{correct}\text{.}\hfill \end{array}$

Solve $m-2=-9$ for $m$ .

$\begin{array}{llll}\hfill m-2& =\hfill & -9\hfill & 2\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{associated}\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}m\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{subtraction}\text{.}\text{\hspace{0.17em}}\text{Undo}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{association}\text{\hspace{0.17em}}\hfill \\ \hfill m-2+2& =\hfill & -9+2\hfill & \text{by}\text{\hspace{0.17em}}\text{adding}\text{\hspace{0.17em}}2\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}both\text{\hspace{0.17em}}\text{sides}\text{.}\hfill \\ \hfill m+0& =\hfill & -7\hfill & -2+2=0\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{additive}\text{\hspace{0.17em}}\text{identity}.\text{\hspace{0.17em}}m+0=m.\hfill \\ \hfill m& =\hfill & -7\hfill & \hfill \end{array}$

Check : Substitute $-7$ for $m$ in the original equation. $\begin{array}{llll}\hfill m-2& \text{=}\hfill & -9\hfill & \hfill \\ \hfill -7-2& \text{=}\hfill & -9\hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill -9& \text{=}\hfill & -9\hfill & \text{Yes,}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{correct}\text{.}\hfill \end{array}$

Solve $y-2.181=-16.915$ for $y$ .

$\begin{array}{lll}\hfill y-2.181& =\hfill & -16.915\hfill \\ \hfill y-2.181+2.181& =\hfill & -16.915+2.181\hfill \\ \hfill y& =\hfill & -14.734\hfill \end{array}$

On the Calculator
$\begin{array}{ll}\hfill & \hfill \\ \text{Type}\hfill & 16.915\hfill \\ \text{Press}\hfill & \begin{array}{||}\hline +/-\\ \hline\end{array}\hfill \\ \text{Press}\hfill & \begin{array}{||}\hline +\\ \hline\end{array}\hfill \\ \text{Type}\hfill & 2.181\hfill \\ \text{Press}\hfill & \begin{array}{||}\hline =\\ \hline\end{array}\hfill \\ \text{Display}\text{\hspace{0.17em}}\text{reads:}\hfill & -14.734\hfill \end{array}$

Solve $y+m=s$ for $y$ .

$\begin{array}{llll}\hfill y+m& =\hfill & s\hfill & m\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{associated}\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}y\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{addition}\text{.}\text{\hspace{0.17em}}\text{Undo}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{association}\text{\hspace{0.17em}}\hfill \\ \hfill y+m-m& =\hfill & s-m\hfill & \text{by}\text{\hspace{0.17em}}\text{subtracting}\text{\hspace{0.17em}}m\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}both\text{\hspace{0.17em}}\text{sides}\text{.}\hfill \\ \hfill y+0& =\hfill & s-m\hfill & m-m=0\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{additive}\text{\hspace{0.17em}}\text{identity}.\text{\hspace{0.17em}}y+0=y.\hfill \\ \hfill y& =\hfill & s-m\hfill & \hfill \end{array}$

Check : Substitute $s-m$ for $y$ in the original equation. $\begin{array}{lllll}\hfill y+m& \text{=}\hfill & s\hfill & \hfill & \hfill \\ \hfill s-m+m& \text{=}\hfill & s\hfill & \hfill & \text{Is}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{correct?}\hfill \\ \hfill s& \text{=}\hfill & s\hfill & \text{True}\hfill & \text{Yes,}\text{\hspace{0.17em}}\text{this}\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{correct}\text{.}\hfill \end{array}$

Solve $k-3h=-8h+5$ for $k$ .

$\begin{array}{llll}\hfill k-3h& =\hfill & -8h+5\hfill & 3h\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{associated}\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}k\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\text{subtraction}\text{.}\text{\hspace{0.17em}}\text{Undo}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{association}\text{\hspace{0.17em}}\hfill \\ \hfill k-3h+3h& =\hfill & -8h+5+3h\hfill & \text{by}\text{\hspace{0.17em}}\text{adding}\text{\hspace{0.17em}}3h\text{\hspace{0.17em}}\text{to}\text{\hspace{0.17em}}both\text{\hspace{0.17em}}\text{sides}\text{.}\hfill \\ \hfill k+0& =\hfill & -5h+5\hfill & -3h+3h=0\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}0\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{the}\text{\hspace{0.17em}}\text{additive}\text{\hspace{0.17em}}\text{identity}.\text{\hspace{0.17em}}k+0=k.\hfill \\ \hfill k& =\hfill & -5h+5\hfill & \hfill \end{array}$

## Practice set b

Solve $y-3=8\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}y.$

$y=11$

Solve $x+9=-4\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}x.$

$x=-13$

Solve $m+6=0\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}m.$

$m=-6$

Solve $g-7.2=1.3\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}g.$

$g=8.5$

solve $f+2d=5d\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}f.$

$f=3d$

Solve $x+8y=2y-1\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}x.$

$x=-6y-1$

Solve $y+4x-1=5x+8\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}y.$

$y=x+9$

## Exercises

For the following problems, classify each of the equations as an identity, contradiction, or conditional equation.

$m+6=15$

conditional

$y-8=-12$

$x+1=x+1$

identity

$k-2=k-3$

$g+g+g+g=4g$

identity

$x+1=0$

For the following problems, determine which of the literal equations have been solved for a variable. Write "solved" or "not solved."

$y=3x+7$

solved

$m=2k+n-1$

$4a=y-6$

not solved

$hk=2k+h$

$2a=a+1$

not solved

$5m=2m-7$

$m=m$

not solved

For the following problems, solve each of the conditional equations.

$h-8=14$

$k+10=1$

$k=-9$

$m-2=5$

$y+6=-11$

$y=-17$

$y-8=-1$

$x+14=0$

$x=-14$

$m-12=0$

$g+164=-123$

$g=-287$

$h-265=-547$

$x+17=-426$

$x=-443$

$h-4.82=-3.56$

$y+17.003=-1.056$

$y=-18.059$

$k+1.0135=-6.0032$

Solve $n+m=4\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}n.$

$n=4-m$

Solve $P+3Q-8=0\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}P.$

Solve $a+b-3c=d-2f\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}b.$

$b=-a+3c+d-2f$

Solve $x-3y+5z+1=2y-7z+8\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}x.$

Solve $4a-2b+c+11=6a-5b\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}c.$

$c=2a-3b-11$

## Exercises for review

( [link] ) Simplify ${\left(4{x}^{5}{y}^{2}\right)}^{3}$ .

( [link] ) Write $\frac{20{x}^{3}{y}^{7}}{5{x}^{5}{y}^{3}}$ so that only positive exponents appear.

$\frac{4{y}^{4}}{{x}^{2}}$

( [link] ) Write the number of terms that appear in the expression $5{x}^{2}+2x-6+\left(a+b\right)$ , and then list them.

( [link] ) Find the product. ${\left(3x-1\right)}^{2}$ .

$9{x}^{2}-6x+1$

( [link] ) Specify the domain of the equation $y=\frac{5}{x-2}$ .

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.