# 5.1 Phy1020: brief trigonometry tutorial  (Page 5/20)

 Page 5 / 20

Key-value pairs

Figure 4 contains the text values associated with each of the Braille keys.

Figure 4 . Text values for Braille keys in file Phy1020b2svg.
```m: A 3-4-5 Triangle n: 4o: Vertical axis p: 0q: 0 r: Adjacent sides: 53.13 Degrees t: adju: 3 v: oppw: Opposite side x: hypy: Hypotenuse z: Horizontal axisA: Not drawn to scale```

The length of the hypotenuse

Now that you have your right triangle on the graph board, or you have access to tactile graphics created from the svg file, and you know thelengths of the adjacent and opposite sides, do you remember how to calculate the length of the hypotenuse?

The Pythagorean theorem

Hopefully you know that for a right triangle, the square of the hypotenuse is equal to the sum of the squares of the two othersides. Thus, the length of the hypotenuse is equal to the square root of the sum of the squares of the other two sides.

In this case we can do the arithmetic in our heads to compute the length of the hypotenuse. (I planned it that way.)

The square of the adjacent side is 9. The square of the opposite side is 16. The sum of the squares is 25, and the square root of 25 is5. Thus, the length of the hypotenuse is 5.

A 3-4-5 triangle

You have created a rather unique triangle. You have created a right triangle in which the sides are either equal to, or proportional to the integervalues 3, 4, and 5.

I chose this triangle on purpose for its simplicity. We will use it to investigate some aspects of trigonometry.

## The sine and arcsine of an angle

You will often hear people talk about the sine of an angle or the cosine of an angle. Just what is the sine of an angle anyway?

Although the sine of an angle is based on very specific geometric considerations involving circles (see (External Link) ), for our purposes, the sine of an angle is simply a ratio between the lengths of two different sides of a righttriangle.

A ratio of two sides

For our purposes, we will say that the sine of an angle is equal to the ratio of the opposite side and the hypotenuse. Therefore, in the case of the 3-4-5 triangle that youhave on your graph board, the sine of the angle at the origin is equal to 4/5 or 0.8.

If we know the lengths of the hypotenuse and the opposite side, we can compute the sine and use it to determine the valueof the angle. (We will do this later using the arcsine.)

Conversely, if we know the value of the angle but don't know the lengths of the hypotenuse and/or the opposite side, we can obtain the value of the sine of theangle using a scientific calculator (such as the Google calculator) or lookup table.

The sine of an angle -- sample computation

Enter the following into the Google search box:

sin(53.13010235415598 degrees)

The following will appear immediately below the search box:

sin(53.13010235415598 degrees) = 0.8

This matches the value that we computed above as the ratio of the opposite side and the hypotenuse.

The arcsine (inverse sine) of an angle

The arcsine of an angle is the value of the angle having a given sine value. In other words, if you know the value of the sine of an unknown angle, you canuse a scientific calculator or lookup table to find the value of the angle.

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!   By  By Anonymous User By By Rhodes  By David Martin By