# 5.1 Integrals of step functions

We begin by defining the integral of certain (but not all) bounded, real-valued functions whose domains are closed bounded intervals.Later, we will extend the definition of integral to certain kinds of unbounded complex-valued functionswhose domains are still intervals, but which need not be either closed or bounded.

We begin by defining the integral of certain (but not all) bounded, real-valued functions whose domains are closed bounded intervals.Later, we will extend the definition of integral to certain kinds of unbounded complex-valued functionswhose domains are still intervals, but which need not be either closed or bounded.First, we recall from [link] the following definitions.

Let $\left[a,b\right]$ be a closed bounded interval of real numbers. By a partition of $\left[a,b\right]$ we mean a finite set $P=\left\{{x}_{0}<{x}_{1}<...<{x}_{n}\right\}$ of $n+1$ points, where ${x}_{0}=a$ and ${x}_{n}=b.$

The $n$ intervals $\left\{\left[{x}_{i-1},{x}_{i}\right]\right\}$ are called the closed subintervals of the partition $P,$ and the $n$ intervals $\left\{\left({x}_{i-1},{x}_{i}\right)\right\}$ are called the open subintervals or elements of $P.$

We write $\parallel P\parallel$ for the maximum of the numbers (lengths of the subintervals) $\left\{{x}_{i}-{x}_{i-1}\right\},$ and call $\parallel P\parallel$ the mesh size of the partition $P.$

If a partition $P=\left\{{x}_{i}\right\}$ is contained in another partition $Q=\left\{{y}_{j}\right\},$ i.e., each ${x}_{i}$ equals some ${y}_{j},$ then we say that $Q$ is finer than $P.$

Let $f$ be a function on an interval $\left[a,b\right],$ and let $P=\left\{{x}_{0}<...<{x}_{n}\right\}$ be a partition of $\left[a,b\right].$ Physicists often consider sums of the form

${S}_{P,\left\{{y}_{i}\right\}}=\sum _{i=1}^{n}f\left({y}_{i}\right)\left({x}_{i}-{x}_{i-1}\right),$

where ${y}_{i}$ is a point in the subinterval $\left({x}_{i-1},{x}_{i}\right).$ These sums (called Riemann sums) are approximations of physical quantities, and the limit of these sums, as the mesh of the partition becomes smaller and smaller,should represent a precise value of the physical quantity. What precisely is meant by the “ limit” of such sums is already a subtle question,but even having decided on what that definition should be, it is as important and difficult to determine whether or not such a limit exists for many (or even any) functions $f.$ We approach this question from a slightly different point of view, but we will revisit Riemann sums in the end.

Again we recall from [link] the following.

Let $\left[a,b\right]$ be a closed bounded interval in $R.$ A real-valued function $h:\left[a,b\right]\to R$ is called a step function if there exists a partition $P=\left\{{x}_{0}<{x}_{1}<...<{x}_{n}\right\}$ of $\left[a,b\right]$ such that for each $1\le i\le n$ there exists a number ${a}_{i}$ such that $h\left(x\right)={a}_{i}$ for all $x\in \left({x}_{i-1},{x}_{i}\right).$

REMARK A step function $h$ is constant on the open subintervals (or elements) of a certain partition. Of course, the partition is not unique.Indeed, if $P$ is such a partition, we may add more points to it, making a larger partition having moresubintervals, and the function $h$ will still be constant on these new open subintervals. That is, a given step function can be described using various distinct partitions.

Also, the values of a step function at the partition points themselves is irrelevant. We only require that it be constant on the open subintervals.

Let $h$ be a step function on $\left[a,b\right],$ and let $P=\left\{{x}_{0}<{x}_{1}<...<{x}_{n}\right\}$ be a partition of $\left[a,b\right]$ such that $h\left(x\right)={a}_{i}$ on the subinterval $\left({x}_{i-1},{x}_{i}\right)$ determined by $P.$

1. Prove that the range of $h$ is a finite set. What is an upper bound on the cardinality of this range?
2. Prove that $h$ is differentiable at all but a finite number of points in $\left[a,b\right].$ What is the value of ${h}^{\text{'}}$ at such a point?
3. Let $f$ be a function on $\left[a,b\right].$ Prove that $f$ is a step function if and only if ${f}^{\text{'}}\left(x\right)$ exists and $=0$ for every $x\in \left(a,b\right)$ except possibly for a finite number of points.
4. What can be said about the values of $h$ at the endpoints $\left\{{x}_{i}\right\}$ of the subintervals of $P?$
5. (e) Let $h$ be a step function on $\left[a,b\right],$ and let $j$ be a function on $\left[a,b\right]$ for which $h\left(x\right)=j\left(x\right)$ for all $x\in \left[a,b\right]$ except for one point $c.$ Show that $j$ is also a step function.
6. If $k$ is a function on $\left[a,b\right]$ that agrees with a step function $h$ except at a finite number of points ${c}_{1},{c}_{2},...,{c}_{N},$ show that $k$ is also a step function.

#### Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, Analysis of functions of a single variable. OpenStax CNX. Dec 11, 2010 Download for free at http://cnx.org/content/col11249/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Analysis of functions of a single variable' conversation and receive update notifications? By OpenStax By Rohini Ajay By Angelica Lito By OpenStax By Brooke Delaney By Prateek Ashtikar By OpenStax By OpenStax By OpenStax By Katy Pratt