# 4.9 Exercise supplement

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Operations with algebraic expressions and numerical evaluations are introduced in this chapter. Coefficients are described rather than merely defined. Special binomial products have both literal and symbolic explanations and since they occur so frequently in mathematics, we have been careful to help the student remember them. In each example problem, the student is "talked" through the symbolic form.This module provides an exercise supplement for the chapter "Algebraic Expressions and Equations".

## Algebraic expressions ( [link] )

For the following problems, write the number of terms that appear, then write the terms.

$4{x}^{2}+7x+12$

$\text{three:\hspace{0.17em}}4{x}^{2},7x,12$

$14{y}^{6}$

$c+8$

$\text{two:\hspace{0.17em}}c,8$

$8$

List, if any should appear, the common factors for the following problems.

${a}^{2}+4{a}^{2}+6{a}^{2}$

${a}^{2}$

$9{y}^{4}-18{y}^{4}$

$12{x}^{2}{y}^{3}+36{y}^{3}$

$12{y}^{3}$

$6\left(a+4\right)+12\left(a+4\right)$

$4\left(a+2b\right)+6\left(a+2b\right)$

$2\left(a+2b\right)$

$17{x}^{2}y\left(z+4\right)+51y\left(z+4\right)$

$6{a}^{2}{b}^{3}c+5{x}^{2}y$

no common factors

For the following problems, answer the question of how many.

$x\text{'}\text{s}\text{\hspace{0.17em}}\text{in}\text{\hspace{0.17em}}9x?$

$\left(a+b\right)\text{'}\text{s}\text{\hspace{0.17em}}\text{in}\text{\hspace{0.17em}}\text{12}\left(a+b\right)?$

12

${a}^{4}\text{'}\text{s}\text{\hspace{0.17em}}\text{in}\text{\hspace{0.17em}}6{a}^{4}?$

${c}^{3}\text{'}\text{s}\text{\hspace{0.17em}}\text{in}\text{\hspace{0.17em}}2{a}^{2}b{c}^{3}?$

$2{a}^{2}b$

${\left(2x+3y\right)}^{2}\text{'}\text{s}\text{\hspace{0.17em}}\text{in}\text{\hspace{0.17em}}5\left(x+2y\right){\left(2x+3y\right)}^{3}?$

For the following problems, a term will be given followed by a group of its factors. List the coefficient of the given group of factors.

$8z,\text{\hspace{0.17em}}z$

8

$16{a}^{3}{b}^{2}{c}^{4},\text{\hspace{0.17em}}{c}^{4}$

$7y\left(y+3\right),\text{\hspace{0.17em}}7y$

$\left(y+3\right)$

$\left(-5\right){a}^{5}{b}^{5}{c}^{5},\text{\hspace{0.17em}}bc$

For the following problems, observe the equations and write the relationship being expressed.

$a=3b$

$\text{The\hspace{0.17em}value\hspace{0.17em}of\hspace{0.17em}}a\text{\hspace{0.17em}is\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}three\hspace{0.17em}time\hspace{0.17em}the\hspace{0.17em}value\hspace{0.17em}of\hspace{0.17em}}b\text{.}$

$r=4t+11$

$f=\frac{1}{2}{m}^{2}+6g$

$\text{The\hspace{0.17em}value\hspace{0.17em}of\hspace{0.17em}}f\text{\hspace{0.17em}is\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}six\hspace{0.17em}times\hspace{0.17em}}g\text{\hspace{0.17em}more\hspace{0.17em}then\hspace{0.17em}one\hspace{0.17em}half\hspace{0.17em}time\hspace{0.17em}the\hspace{0.17em}value\hspace{0.17em}of\hspace{0.17em}}m\text{\hspace{0.17em}squared}\text{.}$

$x=5{y}^{3}+2y+6$

${P}^{2}=k{a}^{3}$

$\text{The\hspace{0.17em}value\hspace{0.17em}of\hspace{0.17em}}P\text{\hspace{0.17em}squared\hspace{0.17em}is\hspace{0.17em}equal\hspace{0.17em}to\hspace{0.17em}the\hspace{0.17em}value\hspace{0.17em}of\hspace{0.17em}}a\text{\hspace{0.17em}cubed\hspace{0.17em}times\hspace{0.17em}}k\text{.}$

Use numerical evaluation to evaluate the equations for the following problems.

$\begin{array}{ll}C=2\pi r.\hfill & \text{Find}\text{\hspace{0.17em}}C\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}\pi \text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{approximated}\text{\hspace{0.17em}}\text{by}\text{\hspace{0.17em}}\hfill \\ \hfill & 3.14\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}r=6.\hfill \end{array}$

$\begin{array}{cc}I=\frac{E}{R}.& \text{Find}\text{\hspace{0.17em}}I\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}E=20\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}R=2.\end{array}$

10

$\begin{array}{cc}I=prt.& \text{Find}\text{\hspace{0.17em}}I\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}p=1000,\text{\hspace{0.17em}}r=0.06,\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}t=3.\end{array}$

$\begin{array}{cc}E=m{c}^{2}.& \text{Find}\text{\hspace{0.17em}}E\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}m=120\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}c=186,000.\end{array}$

$\text{4}\text{.1515}×{\text{10}}^{12}$

$\begin{array}{ll}z=\frac{x-u}{s}.\hfill & \text{Find}\text{\hspace{0.17em}}z\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}x=42,\text{\hspace{0.17em}}u=30,\text{\hspace{0.17em}}\text{and}\hfill \\ s=12.\hfill & \hfill \end{array}$

$\begin{array}{ll}R=\frac{24C}{P\left(n+1\right)}.\hfill & \text{Find}\text{\hspace{0.17em}}R\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}C=35,\text{\hspace{0.17em}}P=300,\text{\hspace{0.17em}}\text{and}\hfill \\ n=19.\hfill & \hfill \end{array}$

$\frac{7}{50}\text{\hspace{0.17em}}\text{or}\text{\hspace{0.17em}}0.14$

## Classification of expressions and equations ( [link] )

For the following problems, classify each of the polynomials as a monomial, binomial, or trinomial. State the degree of each polynomial and write the numerical coefficient of each term.

$2a+9$

$4{y}^{3}+3y+1$

trinomial; cubic; 4, 3, 1

$10{a}^{4}$

$147$

monomial; zero; 147

$4xy+2y{z}^{2}+6x$

$9a{b}^{2}{c}^{2}+10{a}^{3}{b}^{2}{c}^{5}$

binomial; tenth; 9, 10

$\begin{array}{cc}{\left(2x{y}^{3}\right)}^{0},& x{y}^{3}\ne 0\end{array}$

Why is the expression $\frac{4x}{3x-7}$ not a polynomial?

. . . because there is a variable in the denominator

Why is the expression $5{a}^{3/4}$ not a polynomial?

For the following problems, classify each of the equations by degree. If the term linear, quadratic, or cubic applies, use it.

$3y+2x=1$

linear

$4{a}^{2}-5a+8=0$

$y-x-z+4w=21$

linear

$5{x}^{2}+2{x}^{2}-3x+1=19$

${\left(6{x}^{3}\right)}^{0}+5{x}^{2}=7$

## Combining polynomials using addition and subtraction ( [link] ) - special binomial products ( [link] )

Simplify the algebraic expressions for the following problems.

$4{a}^{2}b+8{a}^{2}b-{a}^{2}b$

$21{x}^{2}{y}^{3}+3xy+{x}^{2}{y}^{3}+6$

$22{x}^{2}{y}^{3}+3xy+6$

$7\left(x+1\right)+2x-6$

$2\left(3{y}^{2}+4y+4\right)+5{y}^{2}+3\left(10y+2\right)$

$11{y}^{2}+38y+14$

$5\left[3x+7\left(2{x}^{2}+3x+2\right)+5\right]-10{x}^{2}+4\left(3{x}^{2}+x\right)$

$8\left\{3\left[4{y}^{3}+y+2\right]+6\left({y}^{3}+2{y}^{2}\right)\right\}-24{y}^{3}-10{y}^{2}-3$

$120{y}^{3}+86{y}^{2}+24y+45$

$4{a}^{2}b{c}^{3}+5ab{c}^{3}+9ab{c}^{3}+7{a}^{2}b{c}^{2}$

$x\left(2x+5\right)+3{x}^{2}-3x+3$

$5{x}^{2}+2x+3$

$4k\left(3{k}^{2}+2k+6\right)+k\left(5{k}^{2}+k\right)+16$

$2\left\{5\left[6\left(b+2a+{c}^{2}\right)\right]\right\}$

$60{c}^{2}+120a+60b$

$9{x}^{2}y\left(3xy+4x\right)-7{x}^{3}{y}^{2}-30{x}^{3}y+5y\left({x}^{3}y+2x\right)$

$3m\left[5+2m\left(m+6{m}^{2}\right)\right]+m\left({m}^{2}+4m+1\right)$

$36{m}^{4}+7{m}^{3}+4{m}^{2}+16m$

$2r\left[4\left(r+5\right)-2r-10\right]+6r\left(r+2\right)$

$abc\left(3abc+c+b\right)+6a\left(2bc+b{c}^{2}\right)$

$3{a}^{2}{b}^{2}{c}^{2}+7ab{c}^{2}+a{b}^{2}c+12abc$

${s}^{10}\left(2{s}^{5}+3{s}^{4}+4{s}^{3}+5{s}^{2}+2s+2\right)-{s}^{15}+2{s}^{14}+3s\left({s}^{12}+4{s}^{11}\right)-{s}^{10}$

$6{a}^{4}\left({a}^{2}+5\right)$

$6{a}^{6}+30{a}^{4}$

$2{x}^{2}{y}^{4}\left(3{x}^{2}y+4xy+3y\right)$

$5{m}^{6}\left(2{m}^{7}+3{m}^{4}+{m}^{2}+m+1\right)$

$10{m}^{13}+15{m}^{10}+5{m}^{8}+5{m}^{7}+5{m}^{6}$

${a}^{3}{b}^{3}{c}^{4}\left(4a+2b+3c+ab+ac+b{c}^{2}\right)$

$\left(x+2\right)\left(x+3\right)$

${x}^{2}+5x+6$

$\left(y+4\right)\left(y+5\right)$

$\left(a+1\right)\left(a+3\right)$

${a}^{2}+4a+3$

$\left(3x+4\right)\left(2x+6\right)$

$4xy-10xy$

$-6xy$

$5a{b}^{2}-3\left(2a{b}^{2}+4\right)$

$7{x}^{4}-15{x}^{4}$

$-8{x}^{4}$

$5{x}^{2}+2x-3-7{x}^{2}-3x-4-2{x}^{2}-11$

$4\left(x-8\right)$

$4x-32$

$7x\left({x}^{2}-x+3\right)$

$-3a\left(5a-6\right)$

$-15{a}^{2}+18a$

$4{x}^{2}{y}^{2}\left(2x-3y-5\right)-16{x}^{3}{y}^{2}-3{x}^{2}{y}^{3}$

$-5y\left({y}^{2}-3y-6\right)-2y\left(3{y}^{2}+7\right)+\left(-2\right)\left(-5\right)$

$-11{y}^{3}+15{y}^{2}+16y+10$

$-\left[-\left(-4\right)\right]$

$-\left[-\left(-\left\{-\left[-\left(5\right)\right]\right\}\right)\right]$

$-5$

${x}^{2}+3x-4-4{x}^{2}-5x-9+2{x}^{2}-6$

$4{a}^{2}b-3{b}^{2}-5{b}^{2}-8{q}^{2}b-10{a}^{2}b-{b}^{2}$

$-6{a}^{2}b-8{q}^{2}b-9{b}^{2}$

$2{x}^{2}-x-\left(3{x}^{2}-4x-5\right)$

$3\left(a-1\right)-4\left(a+6\right)$

$-a-27$

$-6\left(a+2\right)-7\left(a-4\right)+6\left(a-1\right)$

Add $-3x+4$ to $5x-8$ .

$2x-4$

Add $4\left({x}^{2}-2x-3\right)$ to $-6\left({x}^{2}-5\right)$ .

Subtract 3 times $\left(2x-1\right)$ from 8 times $\left(x-4\right)$ .

$2x-29$

$\left(x+4\right)\left(x-6\right)$

$\left(x-3\right)\left(x-8\right)$

${x}^{2}-11x+24$

$\left(2a-5\right)\left(5a-1\right)$

$\left(8b+2c\right)\left(2b-c\right)$

$16{b}^{2}-4bc-2{c}^{2}$

${\left(a-3\right)}^{2}$

${\left(3-a\right)}^{2}$

${a}^{2}-6a+9$

${\left(x-y\right)}^{2}$

${\left(6x-4\right)}^{2}$

$36{x}^{2}-48x+16$

${\left(3a-5b\right)}^{2}$

${\left(-x-y\right)}^{2}$

${x}^{2}+2xy+{y}^{2}$

$\left(k+6\right)\left(k-6\right)$

$\left(m+1\right)\left(m-1\right)$

${m}^{2}-1$

$\left(a-2\right)\left(a+2\right)$

$\left(3c+10\right)\left(3c-10\right)$

$9{c}^{2}-100$

$\left(4a+3b\right)\left(4a-3b\right)$

$\left(5+2b\right)\left(5-2b\right)$

$25-4{b}^{2}$

$\left(2y+5\right)\left(4y+5\right)$

$\left(y+3a\right)\left(2y+a\right)$

$2{y}^{2}+7ay+3{a}^{2}$

$\left(6+a\right)\left(6-3a\right)$

$\left({x}^{2}+2\right)\left({x}^{2}-3\right)$

${x}^{4}-{x}^{2}-6$

$6\left(a-3\right)\left(a+8\right)$

$8\left(2y-4\right)\left(3y+8\right)$

$48{y}^{2}+32y-256$

$x\left(x-7\right)\left(x+4\right)$

${m}^{2}n\left(m+n\right)\left(m+2n\right)$

${m}^{4}n+3{m}^{3}{n}^{2}+2{m}^{2}{n}^{3}$

$\left(b+2\right)\left({b}^{2}-2b+3\right)$

$3p\left({p}^{2}+5p+4\right)\left({p}^{2}+2p+7\right)$

$3{p}^{5}+21{p}^{4}+63{p}^{3}+129{p}^{2}+84p$

${\left(a+6\right)}^{2}$

${\left(x-2\right)}^{2}$

${x}^{2}-4x+4$

${\left(2x-3\right)}^{2}$

${\left({x}^{2}+y\right)}^{2}$

${x}^{4}+2{x}^{2}y+{y}^{2}$

${\left(2m-5n\right)}^{2}$

${\left(3{x}^{2}{y}^{3}-4{x}^{4}y\right)}^{2}$

$9{x}^{4}{y}^{6}-24{x}^{6}{y}^{4}+16{x}^{8}{y}^{2}$

${\left(a-2\right)}^{4}$

## Terminology associated with equations ( [link] )

Find the domain of the equations for the following problems.

$y=8x+7$

all real numbers

$y=5{x}^{2}-2x+6$

$y=\frac{4}{x-2}$

all real numbers except 2

$m=\frac{-2x}{h}$

$z=\frac{4x+5}{y+10}$

$x\text{\hspace{0.17em}can\hspace{0.17em}equal\hspace{0.17em}any\hspace{0.17em}real\hspace{0.17em}number;\hspace{0.17em}}y\text{\hspace{0.17em}can\hspace{0.17em}equal\hspace{0.17em}any\hspace{0.17em}number\hspace{0.17em}except}-10$

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform. By Qqq Qqq      By   