<< Chapter < Page Chapter >> Page >
Application of periodic input to linear, time-invariant systems.

When we apply a periodic input to a linear, time-invariant system, the output is periodic and has Fourierseries coefficients equal to the product of the system's frequency response and the input's Fourier coefficients ( Filtering Periodic Signals ). The way we derived the spectrum of non-periodic signal from periodic ones makes it clear that thesame kind of result works when the input is not periodic: If x t serves as the input to a linear, time-invariant system having frequency response H f , the spectrum of the output is X f H f .

Let's use this frequency-domain input-output relationship forlinear, time-invariant systems to find a formula for the R C -circuit's response to a pulse input. We have expressions for the input's spectrum and the system'sfrequency response.

P f f Δ f Δ f
H f 1 1 2 f R C
Thus, the output's Fourier transform equals
Y f f Δ f Δ f 1 1 2 f R C
You won't find this Fourier transform in our table, and the required integral is difficult to evaluate as the expressionstands. This situation requires cleverness and an understanding of the Fourier transform's properties. Inparticular, recall Euler's relation for the sinusoidal term and note the fact that multiplication by a complex exponentialin the frequency domain amounts to a time delay. Let's momentarily make the expression for Y f more complicated.
f Δ f Δ f f Δ f Δ f Δ 2 f 1 2 f 1 2 f Δ
Consequently,
Y f 1 2 f 1 f Δ 1 1 2 f R C
The table of Fourier transform properties suggests thinking about this expression as a product of terms.
  • Multiplication by 1 2 f means integration.
  • Multiplication by the complex exponential 2 f Δ means delay by Δ seconds in the time domain.
  • The term 1 2 f Δ means, in the time domain, subtract the time-delayed signal from its original.
  • The inverse transform of the frequency response is 1 R C t R C u t .
We can translate each of these frequency-domain products intotime-domain operations in any order we like because the order in which multiplications occur doesn't affect the result. Let's start with the productof 1 2 f (integration in the time domain) and the transfer function:
1 2 f 1 1 2 f R C 1 t R C u t
The middle term in the expression for Y f consists of the difference of two terms: the constant 1 and the complex exponential 2 f Δ . Because of the Fourier transform's linearity, we simplysubtract the results.
Y f 1 t R C u t 1 t Δ R C u t Δ
Note that in delaying the signal how we carefully included theunit step. The second term in this result does not begin until t Δ . Thus, the waveforms shown in the Filtering Periodic Signals example mentioned above are exponentials. We say that the time constant of an exponentially decaying signal equals the time it takes todecrease by 1 ofits original value. Thus, the time-constant of the rising and falling portions of the output equal the product of thecircuit's resistance and capacitance.

Derive the filter's output by considering the terms in [link] in the order given. Integrate last rather than first. Youshould get the same answer.

The inverse transform of the frequency response is 1 R C t R C u t . Multiplying the frequency response by 1 2 f Δ means subtract from the original signal its time-delayed version. Delaying the frequency response's time-domainversion by Δ results in 1 R C t Δ R C u t Δ . Subtracting from the undelayed signal yields 1 R C t R C u t 1 R C t Δ R C u t Δ . Now we integrate this sum. Because the integral of a sumequals the sum of the component integrals (integration is linear), we can consider each separately. Becauseintegration and signal-delay are linear, the integral of a delayed signal equals the delayed version of theintegral. The integral is provided in the example .

Got questions? Get instant answers now!

In this example, we used the table extensively to find the inverse Fourier transform, relying mostly on what multiplicationby certain factors, like 1 2 f and 2 f Δ , meant. We essentially treated multiplication by these factorsas if they were transfer functions of some fictitious circuit. The transfer function 1 2 f corresponded to a circuit that integrated, and 2 f Δ to one that delayed. We even implicitly interpreted the circuit's transfer function as the input's spectrum! Thisapproach to finding inverse transforms -- breaking down a complicated expression into products and sums of simplecomponents -- is the engineer's way of breaking down the problem into several subproblems that are much easier to solve and then gluing the results together. Along the way we may make thesystem serve as the input, but in the rule Y f X f H f , which term is the input and which is the transfer function ismerely a notational matter (we labeled one factor with an X and the other with an H ).

Transfer functions

The notion of a transfer function applies well beyond linear circuits. Although we don't have all we need to demonstratethe result as yet, all linear, time-invariant systems have a frequency-domain input-outputrelation given by the product of the input's Fourier transform and the system's transfer function. Thus, linear circuits area special case of linear, time-invariant systems. As we tackle more sophisticated problems in transmitting, manipulating, andreceiving information, we will assume linear systems having certain properties (transfer functions) without worrying about what circuit has the desired property. At this point, you may be concerned thatthis approach is glib, and rightly so. Later we'll show that by involving software that we really don't need to beconcerned about constructing a transfer function from circuit elements and op-amps.

Commutative transfer functions

Another interesting notion arises from the commutative property of multiplication (exploited in an example above ): We can rather arbitrarily choose an order in which to applyeach product. Consider a cascade of two linear, time-invariant systems. Because the Fourier transform of thefirst system's output is X f H 1 f and it serves as the second system's input, the cascade's output spectrum is X f H 1 f H 2 f . Because this product also equals X f H 2 f H 1 f , the cascade having the linear systems in the opposite order yields the sameresult . Furthermore, the cascade acts like a single linear system, having transfer function H 1 f H 2 f . This result applies to other configurations of linear, time-invariant systems as well; see this Frequency Domain Problem . Engineers exploit this property by determining what transfer function they want, thenbreaking it down into components arranged according to standard configurations. Using the fact that op-amp circuitscan be connected in cascade with the transfer function equaling the product of its component's transfer function( see this analog signal processing problem ), we find a ready way of realizing designs. We now understand why op-ampimplementations of transfer functions are so important.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask