<< Chapter < Page Chapter >> Page >
y = c 1 + a e b x

Recall that:

  • c 1 + a is the initial value of the model.
  • when b > 0 , the model increases rapidly at first until it reaches its point of maximum growth rate, ( ln ( a ) b , c 2 ) . At that point, growth steadily slows and the function becomes asymptotic to the upper bound y = c .
  • c is the limiting value, sometimes called the carrying capacity , of the model.

Logistic regression

Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows to an upper limit. We use the command “Logistic” on a graphing utility to fit a logistic function to a set of data points. This returns an equation of the form

y = c 1 + a e b x

Note that

  • The initial value of the model is c 1 + a .
  • Output values for the model grow closer and closer to y = c as time increases.

Given a set of data, perform logistic regression using a graphing utility.

  1. Use the STAT then EDIT menu to enter given data.
    1. Clear any existing data from the lists.
    2. List the input values in the L1 column.
    3. List the output values in the L2 column.
  2. Graph and observe a scatter plot of the data using the STATPLOT feature.
    1. Use ZOOM [9] to adjust axes to fit the data.
    2. Verify the data follow a logistic pattern.
  3. Find the equation that models the data.
    1. Select “Logistic” from the STAT then CALC menu.
    2. Use the values returned for a , b , and c to record the model, y = c 1 + a e b x .
  4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

Using logistic regression to fit a model to data

Mobile telephone service has increased rapidly in America since the mid 1990s. Today, almost all residents have cellular service. [link] shows the percentage of Americans with cellular service between the years 1995 and 2012 Source: The World Bank, 2013 .

Year Americans with Cellular Service (%) Year Americans with Cellular Service (%)
1995 12.69 2004 62.852
1996 16.35 2005 68.63
1997 20.29 2006 76.64
1998 25.08 2007 82.47
1999 30.81 2008 85.68
2000 38.75 2009 89.14
2001 45.00 2010 91.86
2002 49.16 2011 95.28
2003 55.15 2012 98.17
  1. Let x represent time in years starting with x = 0 for the year 1995. Let y represent the corresponding percentage of residents with cellular service. Use logistic regression to fit a model to these data.
  2. Use the model to calculate the percentage of Americans with cell service in the year 2013. Round to the nearest tenth of a percent.
  3. Discuss the value returned for the upper limit, c . What does this tell you about the model? What would the limiting value be if the model were exact?
  1. Using the STAT then EDIT menu on a graphing utility, list the years using values 0–15 in L1 and the corresponding percentage in L2. Then use the STATPLOT feature to verify that the scatterplot follows a logistic pattern as shown in [link] :
    Graph of a scattered plot.

    Use the “Logistic” command from the STAT then CALC menu to obtain the logistic model,

    y = 105.7379526 1 + 6.88328979 e 0.2595440013 x

    Next, graph the model in the same window as shown in [link] the scatterplot to verify it is a good fit:

    Graph of a scattered plot with an estimation line.
  2. To approximate the percentage of Americans with cellular service in the year 2013, substitute x = 18 for the in the model and solve for y :

    y = 105.7379526 1 + 6.88328979 e 0.2595440013 x Use the regression model found in part (a) . = 105.7379526 1 + 6.88328979 e 0.2595440013 ( 18 ) Substitute 18 for  x . 99 .3  Round to the nearest tenth

    According to the model, about 98.8% of Americans had cellular service in 2013.

  3. The model gives a limiting value of about 105. This means that the maximum possible percentage of Americans with cellular service would be 105%, which is impossible. (How could over 100% of a population have cellular service?) If the model were exact, the limiting value would be c = 100 and the model’s outputs would get very close to, but never actually reach 100%. After all, there will always be someone out there without cellular service!

Got questions? Get instant answers now!

Questions & Answers

If the plane intersects the cone (either above or below) horizontally, what figure will be created?
Feemark Reply
can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
lurverkitten
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Liam
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
Ama
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
Spiro
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
Seid
All real x except 5 and - 3
Spiro
***youtu.be/ESxOXfh2Poc
Loree
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
Elliott
By using some imaginary no.
Tanmay
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Elliott
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
Abena
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
Ashley
how
Wargod
what?
John
ok, one moment
UriEl
how do I post your graph for you?
UriEl
it won't let me send an image?
UriEl
also for the first one... y=mx+b so.... y=3x-2
UriEl
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Tommy
Please were did you get y=mx+b from
Abena
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
Tommy
thanks Tommy
Nimo
0=3x-2 2=3x x=3/2 then . y=3/2X-2 I think
Given
co ordinates for x x=0,(-2,0) x=1,(1,1) x=2,(2,4)
neil
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
Where do the rays point?
Spiro
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
abdikarin
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
Brad
strategies to form the general term
carlmark
consider r(a+b) = ra + rb. The a and b are the trig identity.
Mike
How can you tell what type of parent function a graph is ?
Mary Reply
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
William
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
William
y=x will obviously be a straight line with a zero slope
William
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
William
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
Aaron
yes, correction on my end, I meant slope of 1 instead of slope of 0
William

Get the best Precalculus course in your pocket!





Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask