# 4.8 Exercise supplement

 Page 1 / 1
This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module is an exercise supplement for the chapter "Introduction to Fractions and Multiplication and Division of Fractions" and contains many exercise problems. Odd problems are accompanied by solutions.

## Fractions of whole numbers ( [link] )

For Problems 1 and 2, name the suggested fraction.

$\frac{2}{6}$ or $\frac{1}{3}$

For problems 3-5, specify the numerator and denominator.

$\frac{4}{5}$

numerator, 4; denominator, 5

$\frac{5}{\text{12}}$

$\frac{1}{3}$

numerator, 1; denominator, 3

For problems 6-10, write each fraction using digits.

Three fifths

Eight elevenths

$\frac{8}{\text{11}}$

Sixty-one forty firsts

Two hundred six-thousandths

$\frac{\text{200}}{6,\text{000}}$

zero tenths

For problems 11-15, write each fraction using words.

$\frac{\text{10}}{\text{17}}$

ten seventeenths

$\frac{\text{21}}{\text{38}}$

$\frac{\text{606}}{\text{1431}}$

six hundred six, one thousand four hundred thirty-firsts

$\frac{0}{8}$

$\frac{1}{\text{16}}$

one sixteenth

For problems 16-18, state each numerator and denominator and write each fraction using digits.

One minute is one sixtieth of an hour.

In a box that contains forty-five electronic components, eight are known to be defective. If three components are chosen at random from the box, the probability that all three are defective is fifty-six fourteen thousand one hundred ninetieths.

numerator, 56; denominator, 14,190

About three fifths of the students in a college algebra class received a “B” in the course.

For problems 19 and 20, shade the region corresponding to the given fraction.

$\frac{1}{4}$

$\frac{3}{7}$

## Proper fraction, improper fraction, and mixed numbers ( [link] )

For problems 21-29, convert each improper fraction to a mixed number.

$\frac{\text{11}}{4}$

$2\frac{3}{4}$

$\frac{\text{15}}{2}$

$\frac{\text{51}}{8}$

$6\frac{3}{8}$

$\frac{\text{121}}{\text{15}}$

$\frac{\text{356}}{3}$

$\text{118}\frac{2}{3}$

$\frac{3}{2}$

$\frac{5}{4}$

$1\frac{1}{4}$

$\frac{\text{20}}{5}$

$\frac{9}{3}$

3

For problems 30-40, convert each mixed number to an improper fraction.

$5\frac{2}{3}$

$\text{16}\frac{1}{8}$

$\frac{\text{129}}{8}$

$\text{18}\frac{1}{3}$

$3\frac{1}{5}$

$\frac{\text{16}}{5}$

$2\frac{9}{\text{16}}$

$\text{17}\frac{\text{20}}{\text{21}}$

$\frac{\text{377}}{\text{21}}$

$1\frac{7}{8}$

$1\frac{1}{2}$

$\frac{3}{2}$

$2\frac{1}{2}$

$8\frac{6}{7}$

$\frac{\text{62}}{7}$

$2\frac{9}{2}$

Why does $0\frac{1}{\text{12}}$ not qualify as a mixed number?

because the whole number part is zero

Why does 8 qualify as a mixed number?

## Equivalent fractions, reducing fractions to lowest terms, and raising fractions to higher term ( [link] )

For problems 43-47, determine if the pairs of fractions are equivalent.

$\frac{1}{2}$ , $\frac{\text{15}}{\text{30}}$

equivalent

$\frac{8}{9}$ , $\frac{\text{32}}{\text{36}}$

$\frac{3}{\text{14}}$ , $\frac{\text{24}}{\text{110}}$

not equivalent

$2\frac{3}{8}$ , $\frac{\text{38}}{\text{16}}$

$\frac{\text{108}}{\text{77}}$ , $1\frac{5}{\text{13}}$

not equivalent

For problems 48-60, reduce, if possible, each fraction.

$\frac{\text{10}}{\text{25}}$

$\frac{\text{32}}{\text{44}}$

$\frac{8}{\text{11}}$

$\frac{\text{102}}{\text{266}}$

$\frac{\text{15}}{\text{33}}$

$\frac{5}{\text{11}}$

$\frac{\text{18}}{\text{25}}$

$\frac{\text{21}}{\text{35}}$

$\frac{3}{5}$

$\frac{9}{\text{16}}$

$\frac{\text{45}}{\text{85}}$

$\frac{9}{\text{17}}$

$\frac{\text{24}}{\text{42}}$

$\frac{\text{70}}{\text{136}}$

$\frac{\text{35}}{\text{68}}$

$\frac{\text{182}}{\text{580}}$

$\frac{\text{325}}{\text{810}}$

$\frac{\text{65}}{\text{162}}$

$\frac{\text{250}}{\text{1000}}$

For problems 61-72, determine the missing numerator or denominator.

$\frac{3}{7}=\frac{?}{\text{35}}$

15

$\frac{4}{\text{11}}=\frac{?}{\text{99}}$

$\frac{1}{\text{12}}=\frac{?}{\text{72}}$

6

$\frac{5}{8}=\frac{\text{25}}{?}$

$\frac{\text{11}}{9}=\frac{\text{33}}{?}$

27

$\frac{4}{\text{15}}=\frac{\text{24}}{?}$

$\frac{\text{14}}{\text{15}}=\frac{?}{\text{45}}$

42

$\frac{0}{5}=\frac{?}{20}$

$\frac{\text{12}}{\text{21}}=\frac{\text{96}}{?}$

168

$\frac{\text{14}}{\text{23}}=\frac{?}{\text{253}}$

$\frac{\text{15}}{\text{16}}=\frac{\text{180}}{?}$

192

$\frac{\text{21}}{\text{22}}=\frac{\text{336}}{?}$

For problems 73-95, perform each multiplication and division.

$\frac{4}{5}\cdot \frac{\text{15}}{\text{16}}$

$\frac{3}{4}$

$\frac{8}{9}\cdot \frac{3}{\text{24}}$

$\frac{1}{\text{10}}\cdot \frac{5}{\text{12}}$

$\frac{1}{\text{24}}$

$\frac{\text{14}}{\text{15}}\cdot \frac{7}{5}$

$\frac{5}{6}\cdot \frac{\text{13}}{\text{22}}\cdot \frac{\text{11}}{\text{39}}$

$\frac{5}{\text{36}}$

$\frac{2}{3}÷\frac{\text{15}}{7}\cdot \frac{5}{6}$

$3\frac{1}{2}÷\frac{7}{2}$

1

$2\frac{4}{9}÷\frac{\text{11}}{\text{45}}$

$\frac{8}{\text{15}}\cdot \frac{3}{\text{16}}\cdot \frac{5}{\text{24}}$

$\frac{1}{\text{48}}$

$\frac{8}{\text{15}}÷3\frac{3}{5}\cdot \frac{9}{\text{16}}$

$\frac{\text{14}}{\text{15}}÷3\frac{8}{9}\cdot \frac{\text{10}}{\text{21}}$

$\frac{4}{\text{35}}$

$\text{18}\cdot 5\frac{3}{4}$

$3\frac{3}{7}\cdot 2\frac{1}{\text{12}}$

$\frac{\text{50}}{7}=7\frac{1}{7}$

$4\frac{1}{2}÷2\frac{4}{7}$

$6\frac{1}{2}÷3\frac{1}{4}$

2

$3\frac{5}{\text{16}}÷2\frac{7}{\text{18}}$

$7÷2\frac{1}{3}$

3

$\text{17}÷4\frac{1}{4}$

$\frac{5}{8}÷1\frac{1}{4}$

$\frac{1}{2}$

$2\frac{2}{3}\cdot 3\frac{3}{4}$

$\text{20}\cdot \frac{\text{18}}{4}$

90

$0÷4\frac{1}{8}$

$1÷6\frac{1}{4}\cdot \frac{\text{25}}{4}$

1

## Applications involving fractions ( [link] )

Find $\frac{8}{9}$ of $\frac{\text{27}}{2}$ .

What part of $\frac{3}{8}$ is $\frac{\text{21}}{\text{16}}$ ?

$\frac{7}{2}$ or $3\frac{1}{2}$

What part of $3\frac{1}{5}$ is $1\frac{7}{\text{25}}$ ?

Find $6\frac{2}{3}$ of $\frac{9}{\text{15}}$ .

4

$\frac{7}{\text{20}}$ of what number is $\frac{\text{14}}{\text{35}}$ ?

What part of $4\frac{1}{\text{16}}$ is $3\frac{3}{4}$ ?

$\frac{\text{12}}{\text{13}}$

Find $8\frac{3}{\text{10}}$ of $\text{16}\frac{2}{3}$ .

$\frac{3}{\text{20}}$ of what number is $\frac{\text{18}}{\text{30}}$ ?

4

Find $\frac{1}{3}$ of 0.

Find $\frac{\text{11}}{\text{12}}$ of 1.

$\frac{\text{11}}{\text{12}}$

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
7hours 36 min - 4hours 50 min