<< Chapter < Page Chapter >> Page >

How long will it take before twenty percent of our 1000-gram sample of uranium-235 has decayed?

t = 703 , 800 , 000 × ln ( 0.8 ) ln ( 0.5 )  years    226 , 572 , 993  years .

Got questions? Get instant answers now!

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

Key equations

One-to-one property for exponential functions For any algebraic expressions   S   and   T   and any positive real number   b ,   where
b S = b T   if and only if   S = T .
Definition of a logarithm For any algebraic expression S and positive real numbers   b     and   c ,   where   b 1 ,
log b ( S ) = c   if and only if   b c = S .
One-to-one property for logarithmic functions For any algebraic expressions S and T and any positive real number   b ,   where   b 1 ,
log b S = log b T   if and only if   S = T .

Key concepts

  • We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one another and solve for the unknown.
  • When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents equal to one another and solve for the unknown. See [link] .
  • When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite each side of the equation as powers of the same base, then set the exponents equal to one another and solve for the unknown. See [link] , [link] , and [link] .
  • When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each side. See [link] .
  • We can solve exponential equations with base e , by applying the natural logarithm of both sides because exponential and logarithmic functions are inverses of each other. See [link] and [link] .
  • After solving an exponential equation, check each solution in the original equation to find and eliminate any extraneous solutions. See [link] .
  • When given an equation of the form log b ( S ) = c , where S is an algebraic expression, we can use the definition of a logarithm to rewrite the equation as the equivalent exponential equation b c = S , and solve for the unknown. See [link] and [link] .
  • We can also use graphing to solve equations with the form log b ( S ) = c . We graph both equations y = log b ( S ) and y = c on the same coordinate plane and identify the solution as the x- value of the intersecting point. See [link] .
  • When given an equation of the form log b S = log b T , where S and T are algebraic expressions, we can use the one-to-one property of logarithms to solve the equation S = T for the unknown. See [link] .
  • Combining the skills learned in this and previous sections, we can solve equations that model real world situations, whether the unknown is in an exponent or in the argument of a logarithm. See [link] .

Section exercises


How can an exponential equation be solved?

Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.

Got questions? Get instant answers now!

Questions & Answers

If the plane intersects the cone (either above or below) horizontally, what figure will be created?
Feemark Reply
can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
All real x except 5 and - 3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
By using some imaginary no.
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Please were did you get y=mx+b from
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
thanks Tommy
0=3x-2 2=3x x=3/2 then . y=3/2X-2 I think
co ordinates for x x=0,(-2,0) x=1,(1,1) x=2,(2,4)
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
Where do the rays point?
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
consider r(a+b) = ra + rb. The a and b are the trig identity.
How can you tell what type of parent function a graph is ?
Mary Reply
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
y=x will obviously be a straight line with a zero slope
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
yes, correction on my end, I meant slope of 1 instead of slope of 0
Practice Key Terms 1

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?