# 4.6 Dc circuits containing resistors and capacitors  (Page 4/9)

 Page 4 / 9

## RC Circuits for timing

$\text{RC}$ circuits are commonly used for timing purposes. A mundane example of this is found in the ubiquitous intermittent wiper systems of modern cars. The time between wipes is varied by adjusting the resistance in an $\text{RC}$ circuit. Another example of an $\text{RC}$ circuit is found in novelty jewelry, Halloween costumes, and various toys that have battery-powered flashing lights. (See [link] for a timing circuit.)

A more crucial use of $\text{RC}$ circuits for timing purposes is in the artificial pacemaker, used to control heart rate. The heart rate is normally controlled by electrical signals generated by the sino-atrial (SA) node, which is on the wall of the right atrium chamber. This causes the muscles to contract and pump blood. Sometimes the heart rhythm is abnormal and the heartbeat is too high or too low.

The artificial pacemaker is inserted near the heart to provide electrical signals to the heart when needed with the appropriate time constant. Pacemakers have sensors that detect body motion and breathing to increase the heart rate during exercise to meet the body’s increased needs for blood and oxygen.

## Calculating time: RC Circuit in a heart defibrillator

A heart defibrillator is used to resuscitate an accident victim by discharging a capacitor through the trunk of her body. A simplified version of the circuit is seen in [link] . (a) What is the time constant if an $8.00-\mu F$ capacitor is used and the path resistance through her body is $\text{1.00}×{10}^{3}\phantom{\rule{0.25em}{0ex}}\Omega$ ? (b) If the initial voltage is 10.0 kV, how long does it take to decline to $5.00×{10}^{2}\phantom{\rule{0.25em}{0ex}}\text{V}$ ?

Strategy

Since the resistance and capacitance are given, it is straightforward to multiply them to give the time constant asked for in part (a). To find the time for the voltage to decline to $5.00×{10}^{2}\phantom{\rule{0.25em}{0ex}}\text{V}$ , we repeatedly multiply the initial voltage by 0.368 until a voltage less than or equal to $5.00×{10}^{2}\phantom{\rule{0.25em}{0ex}}\text{V}$ is obtained. Each multiplication corresponds to a time of $\tau$ seconds.

Solution for (a)

The time constant $\tau$ is given by the equation $\tau =\text{RC}$ . Entering the given values for resistance and capacitance (and remembering that units for a farad can be expressed as $s/\Omega$ ) gives

$\tau =\text{RC}=\left(1.00×{10}^{3}\phantom{\rule{0.15em}{0ex}}\Omega \right)\left(8\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\mathrm{\mu F}\right)=8\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\text{ms.}$

Solution for (b)

In the first 8.00 ms, the voltage (10.0 kV) declines to 0.368 of its initial value. That is:

(Notice that we carry an extra digit for each intermediate calculation.) After another 8.00 ms, we multiply by 0.368 again, and the voltage is

$\begin{array}{lll}V\prime & =& 0.368V\\ & =& \left(0.368\right)\left(3.680×{10}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}\right)\\ & =& 1.354×{10}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}\phantom{\rule{0.25em}{0ex}}\text{at}\phantom{\rule{0.25em}{0ex}}t=16.0\phantom{\rule{0.25em}{0ex}}\text{ms.}\end{array}$

Similarly, after another 8.00 ms, the voltage is

$\begin{array}{lll}V\text{′′}& =& \text{0.368}V\prime =\left(\text{0.368}\right)\left(\text{1.354}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}\right)\\ & =& \text{498 V at}\phantom{\rule{0.25em}{0ex}}t=\text{24}\text{.0 ms.}\end{array}$

Discussion

So after only 24.0 ms, the voltage is down to 498 V, or 4.98% of its original value. Such brief times are useful in heart defibrillation, because the brief but intense current causes a brief but effective contraction of the heart. The actual circuit in a heart defibrillator is slightly more complex than the one in [link] , to compensate for magnetic and AC effects that will be covered in Magnetism .

#### Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

 By By Anonymous User By