<< Chapter < Page Chapter >> Page >

Voltage on the capacitor is initially zero and rises rapidly at first, since the initial current is a maximum. [link] (b) shows a graph of capacitor voltage versus time ( t size 12{t} {} ) starting when the switch is closed at t = 0 size 12{t=0} {} . The voltage approaches emf asymptotically, since the closer it gets to emf the less current flows. The equation for voltage versus time when charging a capacitor C size 12{C} {} through a resistor R size 12{R} {} , derived using calculus, is

V = emf ( 1 e t / RC ) (charging), size 12{V="emf" \( 1 - e rSup { size 8{ - t/ ital "RC"} } \) } {}

where V size 12{V} {} is the voltage across the capacitor, emf is equal to the emf of the DC voltage source, and the exponential e = 2.718 … is the base of the natural logarithm. Note that the units of RC size 12{ ital "RC"} {} are seconds. We define

τ = RC , size 12{τ= ital "RC"} {}

where τ size 12{τ} {} (the Greek letter tau) is called the time constant for an RC size 12{ ital "RC"} {} circuit. As noted before, a small resistance R size 12{R} {} allows the capacitor to charge faster. This is reasonable, since a larger current flows through a smaller resistance. It is also reasonable that the smaller the capacitor C size 12{C} {} , the less time needed to charge it. Both factors are contained in τ = RC size 12{τ= ital "RC"} {} .

More quantitatively, consider what happens when t = τ = RC size 12{t=τ= ital "RC"} {} . Then the voltage on the capacitor is

V = emf 1 e 1 = emf 1 0 . 368 = 0 . 632 emf . size 12{V="emf" left (1 - e rSup { size 8{ - 1} } right )="emf" left (1 - 0 "." "368" right )=0 "." "632" cdot "emf"} {}

This means that in the time τ = RC size 12{τ= ital "RC"} {} , the voltage rises to 0.632 of its final value. The voltage will rise 0.632 of the remainder in the next time τ size 12{τ} {} . It is a characteristic of the exponential function that the final value is never reached, but 0.632 of the remainder to that value is achieved in every time, τ size 12{τ} {} . In just a few multiples of the time constant τ size 12{τ} {} , then, the final value is very nearly achieved, as the graph in [link] (b) illustrates.

Discharging a capacitor

Discharging a capacitor through a resistor proceeds in a similar fashion, as [link] illustrates. Initially, the current is I 0 = V 0 R size 12{I rSub { size 8{0} } = { {V rSub { size 8{0} } } over {R} } } {} , driven by the initial voltage V 0 size 12{V rSub { size 8{0} } } {} on the capacitor. As the voltage decreases, the current and hence the rate of discharge decreases, implying another exponential formula for V size 12{V} {} . Using calculus, the voltage V size 12{V} {} on a capacitor C size 12{C} {} being discharged through a resistor R size 12{R} {} is found to be

V = V 0 e t / RC (discharging). size 12{V=`V"" lSub { size 8{0} } `e rSup { size 8{ - t/ ital "RC"} } } {}
Part a shows a circuit with a capacitor C connected in series with a resistor R and a switch to close the circuit. The current is shown flowing in a counterclockwise direction. The capacitor plates are shown to have a charge positive q and negative q respectively. Part b shows a graph of the variation of voltage across the capacitor with time. The voltage is plotted along the vertical axis and the time is along the horizontal axis. The graph shows a smooth downward falling curve which approaches a minimum and flattens out close to zero over time.
(a) Closing the switch discharges the capacitor C size 12{C} {} through the resistor R size 12{R} {} . Mutual repulsion of like charges on each plate drives the current. (b) A graph of voltage across the capacitor versus time, with V = V 0 size 12{V=V rSub { size 8{0} } } {} at t = 0 . The voltage decreases exponentially, falling a fixed fraction of the way to zero in each subsequent time constant τ size 12{τ} {} .

The graph in [link] (b) is an example of this exponential decay. Again, the time constant is τ = RC size 12{τ= ital "RC"} {} . A small resistance R size 12{R} {} allows the capacitor to discharge in a small time, since the current is larger. Similarly, a small capacitance requires less time to discharge, since less charge is stored. In the first time interval τ = RC size 12{τ= ital "RC"} {} after the switch is closed, the voltage falls to 0.368 of its initial value, since V = V 0 e 1 = 0 . 368 V 0 size 12{V=V rSub { size 8{0} } cdot e rSup { size 8{ - 1} } =0 "." "368"V rSub { size 8{0} } } {} .

During each successive time τ size 12{τ} {} , the voltage falls to 0.368 of its preceding value. In a few multiples of τ size 12{τ} {} , the voltage becomes very close to zero, as indicated by the graph in [link] (b).

Now we can explain why the flash camera in our scenario takes so much longer to charge than discharge; the resistance while charging is significantly greater than while discharging. The internal resistance of the battery accounts for most of the resistance while charging. As the battery ages, the increasing internal resistance makes the charging process even slower. (You may have noticed this.)

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics ii. OpenStax CNX. Nov 29, 2012 Download for free at http://legacy.cnx.org/content/col11458/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics ii' conversation and receive update notifications?

Ask