<< Chapter < Page Chapter >> Page >

Drawings of graphs resulting from transformation applied by fraction part function (FPF) follow the same reasoning and steps as deliberated for modulus and greatest integer function. Before, we proceed to draw graphs for different function forms, we need to recapitulate the graph of fraction part function (FPF) and also infer thereupon few of the values of FPF around zero.

Fraction part function

FPF is a periodic function with period 1.

The values of FPF around zero are (we can write these expressions by observing graph. A bit of practice to write down these intervals helps.) :

{ x } = x + 2 ; - 2 x < - 1 { x } = x + 1 ; - 1 x < 0 { x } = x ; 0 x < 1 { x } = x 1 ; 1 x < 2

Important point to note is that lower integer is included, but higher integer is excluded in the intervals of unity in which FPF is defined. The graph segment in the interval [0,1) is y=x i.e. identity function. We obtain expression of function in right intervals (positive value intervals of x) by shifting identity function towards right by 1 successively and in left intervals (negative value intervals of x) by shifting identity function towards left by 1 successively. The values of FPF are continuous real values which is equal to or greater than zero but less than 1. These function values are repeated in each of intervals of unity along x-axis. Thus, FPF is a periodic function with period of 1. Domain of FPF is R and range is [0,1). Further, FPF is related to real number as x=[x]+{x}.

A function like y=f(x) has different elements. We can apply FPF to these elements of the function. There are following different possibilities :

1 : y = f({x})

2 : y ={f(x)}

3 : {y} = f(x)

Fraction part operator applied to the argument

The form of transformation is depicted as :

y = f x y = f { x }

The graph of y=f(x) is transformed in y=f({x}) by virtue of changes in the argument values. The independent variable is subjected to fraction part operator. This changes the normal real value input to function. Instead of real numbers, independent variable to function is rendered to be fractions irrespective of values of x. A value like x = - 2.3 is passed to the function as 0.7 in the interval [0,1).

Clearly, real values of “x” are truncated to fraction values in all intervals. It means that same set of values of the function y=f(|x|) corresponding to interval of x defined by [0,1] will repeat in other intervals along x-axis. The FPF is a periodic function with a period of 1. Taking advantage of this fact, we obtain graph of y=f({x}) by repeating part of graph for x in [0,1) to other intervals along x-axis. Clearly, transformed function y=f({x}) is periodic with a period of 1.

From the point of construction of the graph of y=f({x}), we need to modify the graph of y=f(x) as :

1 : Draw lines parallel to y-axis (vertical lines) at integral values along x-axis to cover the graph of y=f(x).

2 : Identify part of the graph for values of x in [0,1). Include end point corresponding to x=0 and exclude end point corresponding to x=1.

3 : Repeat the part of the graph identified in step 2 for other intervals of x

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
What is power set
Satyabrata Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?