<< Chapter < Page Chapter >> Page >
  • Understand Newton's third law of motion.
  • Apply Newton's third law to define systems and solve problems of motion.

There is a passage in the musical Man of la Mancha that relates to Newton’s third law of motion. Sancho, in describing a fight with his wife to Don Quixote, says, “Of course I hit her back, Your Grace, but she’s a lot harder than me and you know what they say, ‘Whether the stone hits the pitcher or the pitcher hits the stone, it’s going to be bad for the pitcher.’” This is exactly what happens whenever one body exerts a force on another—the first also experiences a force (equal in magnitude and opposite in direction). Numerous common experiences, such as stubbing a toe or throwing a ball, confirm this. It is precisely stated in Newton’s third law of motion    .

Newton’s third law of motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that it exerts.

This law represents a certain symmetry in nature : Forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is the action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from the side of a pool, as illustrated in [link] . She pushes against the pool wall with her feet and accelerates in the direction opposite to that of her push. The wall has exerted an equal and opposite force back on the swimmer. You might think that two equal and opposite forces would cancel, but they do not because they act on different systems . In this case, there are two systems that we could investigate: the swimmer or the wall. If we select the swimmer to be the system of interest, as in the figure, then F wall on feet size 12{F rSub { size 8{"wall on feet"} } } {} is an external force on this system and affects its motion. The swimmer moves in the direction of F wall on feet size 12{F rSub { size 8{"wall on feet"} } } {} . In contrast, the force F feet on wall size 12{F rSub { size 8{"feet on wall"} } } {} acts on the wall and not on our system of interest. Thus F feet on wall size 12{F rSub { size 8{"feet on wall"} } } {} does not directly affect the motion of the system and does not cancel F wall on feet size 12{F rSub { size 8{"wall on feet"} } } {} . Note that the swimmer pushes in the direction opposite to that in which she wishes to move. The reaction to her push is thus in the desired direction.

A swimmer is exerting a force with her feet on a wall inside a swimming pool represented by an arrow labeled as vector F sub Feet on wall, pointing toward the right, and the wall is also exerting an equal force on her feet, represented by an arrow labeled as vector F sub Wall on feet, having the same length but pointing toward the left. The direction of acceleration of the swimmer is toward the left, shown by an arrow toward the left.
When the swimmer exerts a force F feet on wall size 12{F rSub { size 8{"feet on wall"} } } {} on the wall, she accelerates in the direction opposite to that of her push. This means the net external force on her is in the direction opposite to F feet on wall size 12{F rSub { size 8{"feet on wall"} } } {} . This opposition occurs because, in accordance with Newton’s third law of motion, the wall exerts a force F wall on feet size 12{F rSub { size 8{"wall on feet"} } } {} on her, equal in magnitude but in the direction opposite to the one she exerts on it. The line around the swimmer indicates the system of interest. Note that F feet on wall size 12{F rSub { size 8{"feet on wall"} } } {} does not act on this system (the swimmer) and, thus, does not cancel F wall on feet size 12{F rSub { size 8{"wall on feet"} } } {} . Thus the free-body diagram shows only F wall on feet size 12{F rSub { size 8{"wall on feet"} } } {} , w size 12{w} {} , the gravitational force, and BF size 12{ ital "BF"} {} , the buoyant force of the water supporting the swimmer’s weight. The vertical forces w size 12{w} {} and BF size 12{ ital "BF"} {} cancel since there is no vertical motion.

Questions & Answers

Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
Ademiye
yes it was an assignment question "^"represent raise to power pls
Gabriel
mu/y³ u>v²k² uk²/√u-vk please help me out
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Ademiye
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
Ademiye
method of polarization
Ajayi
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
Yinka Reply
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
Taheer Reply
why the satellite does not drop to the earth explain
Emmanuel Reply
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara
at t=0second,aparticles moving in x-y plain with aconstant acceleration has avelocity of initial velocity =(3i-2j)m/s and is at the origion.at t=3second the particle's velocity is final velocity=(9i+7j)then how to find the acceleration?
Yoni Reply
how about the formula like v^2=u^2+2as
Bayuo
a=v-u/t
Doreen
what is physics
Yinka
why is there a maximum distance at which the image can exist behind a convex mirror
Alfred Reply
The ball of a simple pendulum take 0.255 to swing from its equilibrium position to one extreme. Calculate it period.
Abubakr Reply
The Ball of a simple pendulum take 0.255 to swing from its equilibrium position to one extreme. calculate its period
Abubakr
why is there a maximum distance at which the image can exist behind a convex mirror
Alfred
amplitude=0 .255s period=4×.255=1.02 sec period is one complete cycle
MUKHTAR
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask