4.3 Binary search tree

 Page 1 / 3
The binary tree structure can be used as an efficient way to organize data objects that are totally ordered. This is done by maintaining the tree in such a way that for any given subtree, the data elements in its left subtree are less than the root and the data elements in the right subtree are greater than the root. Such a binary tree is called a binary search tree.

1. binary search tree property (bstp)

Consider the following binary tree of Integer objects.

```-7 |_ -55| |_ [] | |_ -16| |_ -20 | | |_ []| | |_ [] | |_ -9| |_ [] | |_ []|_ 0 |_ -4| |_ [] | |_ []|_ 23 |_ []|_ []```

Notice the following property:

• all elements in the left subtree are less than the root element,
• and the root element is less than all elements in the right subtree.

Moreover, this property holds recursively for all subtrees.  It is called the binary search tree (BST) property.

In general, instead of Integer objects, suppose we have a set of objects that can be compared for equality with "equal to" and "totally ordered" with an order relation called "less or equal to" .  Define "less than" to mean "less or equal to" AND "not equal to".  Let T be a BiTree structure that stores such totally ordered objects.

Definition of binary search tree property

The binary search tree property (BSTP) is defined on the binary tree structure as follows.

• An empty binary tree satisfies the BSTP.
• A non-empty binary tree T satisfies the BSTP if and only if
• the left and right subtrees of T both satisfy BSTP, and
• all elements in the left subtree of T are less than the root of T, and
• the root of T is less than all elements in the right subtree of T.

We can take advantage of this property when looking up for a particular ordered object in the tree.  Instead of scanning the whole tree for the search target, we can compare the search target against the root element and narrow the search to the left subtree or the right subtree if necessary.  So in the worst possible case, the number of comparisons is proportional to the height of the binary tree.  This is a big win if the tree is balanced .  It can be proven that when a tree containing N elements is balanced, its height is at most a constant multiple of logN.  For example, the height of a balanced tree containing 10 6 elements is at most a fixed multiple of 6.  Here is the definition of what a balanced tree is.

Definition of balanced tree

• An empty tree is balanced .
• A non-empty tree is balanced if and only if
•  its subtrees are balanced and
• the heights of the subtrees differ by a fixed constant or by a fixed constant factor.

A binary tree with  the BST property is called a binary search tree.  It can serve as an efficient way for storage/retrieval of data.  We are lead to the following question: how to create and maintain a binary search tree?

2. binary search tree insertion

Suppose we start with an empty binary tree T and  a  Comparator that models a total ordering in a given set of objects S.  Then T clearly has the BST property with respect the Comparator ordering of S.  The following algorithm (visitor on binary trees) will allow us to insert elements of S into T and at the same time maintain the BST property for T.  This algorithm also works for binary search tree containing Comparable objects.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!