<< Chapter < Page Chapter >> Page >


Graad 9

Vierkante, perspektieftekening, transformasies

Module 23

Om begrip van vierhoeke en hul eienskappe toe te pas in probleme


Om begrip van vierhoeke en hul eienskappe toe te pas in probleme

[LU 3.7, 4.4]

  • Die sketse vir hierdie gedeelte is op ‘n aparte problemeblad. Verwys daarna vir die volgende vrae.
  • Werk soos volg in pare: Bestudeer elke probleem onafhanklik totdat jy dit opgelos het, of so ver gekom het as jy kan. Verduidelik dan jou oplossing stap-vir-stap aan jou maat, totdat hy dit goed genoeg begryp om dit te kan neerskryf. By die volgende probleem is dit jou maat se beurt om sy oplossing aan jou te verduidelik sodat jy dit kan neerskryf. Onthou dat julle redes of verduidelikings moet verskaf vir alle bewerings wat gemaak word.

1. Bereken die waardes van a, b, c , ens. vanuit die inligting by die vraag en in die skets, en beantwoord dan die vraag wat daarop volg.

1.1 In die skets is ‘n vierkant met een sy 3 cm. a = die aanligggende sy.

b = die hoeklyn. c = die oppervlakte van die vierkant.

Hoekom maak die hoeklyn ‘n 45 ° hoek met die sy?

1.2 Dit is ‘n ruit met lang hoeklyn = 8 cm en kort hoeklyn = 6 cm. a = sylengte.

b = oppervlakte van ruit.

Waarom mag jy die Stelling van Pythagoras hier gebruik?

1.3 Die skets is van ‘n reghoek met kort sy = 5 cm en ‘n hoeklyn = 13 cm.

a = die lang sy. b = oppervlakte van die reghoek.

Waarom is die ander hoeklyn ook 13 cm?

1.4 Die parallelogram het een binnehoek = 65°, hoogte = 3 cm en lang sy = 9 cm.

a = klein binnehoek. b = groot binnehoek. c = oppervlakte van parallelogram

Verduidelik waarom hierdie parallelogram dieselfde oppervlakte het as ‘n 3 cm by 9 cm reghoek.

2. Bereken die waarde van x vanuit die inligting in die sketse.

2.1 Die driehoek is gelykbenig met een van die gelyke sye 15 cm en oppervlakte = 45 cm 2 .

x = hoogte van driehoek.

2.2 Hierdie trapesium se langste sy is 23 cm en die sy wat ewewydig daaraan is, is 15 cm.

Die hoogte is = 8 cm. x = oppervlakte van trapesium.

Waarom is die twee gemerkte binnehoeke supplementêr?

2.3 Die vlieër se oppervlakte is 162 cm 2 en die kort hoeklyn is 12 cm. x = lang hoeklyn.

Waarom is die som van die vlieër se binnehoeke 360 ° ?

2.4 In hierdie skets is dieselfde vlieër van vraag 2.3 in drie driehoeke met gelyke oppervlaktes verdeel (ignoreer die stippellyn). x = boonste gedeelte van die lang hoeklyn.

3. Die volgende probleme bevat inligting waaruit jy ‘n vergelyking moet vorm. Gebruik die kenmerke van die figure. As jy dan die vergelyking oplos, gee dit jou die waarde van x .

3.1 Twee van die hoeke van die ruit is 3 x en x onderskeidelik.

Hoekom kan hierdie figuur nie ‘n vierkant wees nie?

3.2 In die parallelogram is die groottes van twee teenoorstaande binnehoeke x + 30° en 2 x – 10° onderskeidelik.

Verduidelik waarom die gemerkte hoek 110 ° is .

3.3 Die trapesium het twee hoeke van x – 20° en x + 40° onderskeidelik.

Waarom is dit nie ‘n parallelogram nie?

3.4 Die kort hoeklyn van die ruit is getrek; die hoeklyn maak een hoek van 50°, en een binnehoek van die ruit is gemerk met ‘n x .

Werkvel vir Leereenheid 1

Problemeblad vir Leereenheid 1

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?