<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 9

Vierkante, perspektieftekening, transformasies

Module 23

Om begrip van vierhoeke en hul eienskappe toe te pas in probleme

AKTIWITEIT 1

Om begrip van vierhoeke en hul eienskappe toe te pas in probleme

[LU 3.7, 4.4]

  • Die sketse vir hierdie gedeelte is op ‘n aparte problemeblad. Verwys daarna vir die volgende vrae.
  • Werk soos volg in pare: Bestudeer elke probleem onafhanklik totdat jy dit opgelos het, of so ver gekom het as jy kan. Verduidelik dan jou oplossing stap-vir-stap aan jou maat, totdat hy dit goed genoeg begryp om dit te kan neerskryf. By die volgende probleem is dit jou maat se beurt om sy oplossing aan jou te verduidelik sodat jy dit kan neerskryf. Onthou dat julle redes of verduidelikings moet verskaf vir alle bewerings wat gemaak word.

1. Bereken die waardes van a, b, c , ens. vanuit die inligting by die vraag en in die skets, en beantwoord dan die vraag wat daarop volg.

1.1 In die skets is ‘n vierkant met een sy 3 cm. a = die aanligggende sy.

b = die hoeklyn. c = die oppervlakte van die vierkant.

Hoekom maak die hoeklyn ‘n 45 ° hoek met die sy?

1.2 Dit is ‘n ruit met lang hoeklyn = 8 cm en kort hoeklyn = 6 cm. a = sylengte.

b = oppervlakte van ruit.

Waarom mag jy die Stelling van Pythagoras hier gebruik?

1.3 Die skets is van ‘n reghoek met kort sy = 5 cm en ‘n hoeklyn = 13 cm.

a = die lang sy. b = oppervlakte van die reghoek.

Waarom is die ander hoeklyn ook 13 cm?

1.4 Die parallelogram het een binnehoek = 65°, hoogte = 3 cm en lang sy = 9 cm.

a = klein binnehoek. b = groot binnehoek. c = oppervlakte van parallelogram

Verduidelik waarom hierdie parallelogram dieselfde oppervlakte het as ‘n 3 cm by 9 cm reghoek.

2. Bereken die waarde van x vanuit die inligting in die sketse.

2.1 Die driehoek is gelykbenig met een van die gelyke sye 15 cm en oppervlakte = 45 cm 2 .

x = hoogte van driehoek.

2.2 Hierdie trapesium se langste sy is 23 cm en die sy wat ewewydig daaraan is, is 15 cm.

Die hoogte is = 8 cm. x = oppervlakte van trapesium.

Waarom is die twee gemerkte binnehoeke supplementêr?

2.3 Die vlieër se oppervlakte is 162 cm 2 en die kort hoeklyn is 12 cm. x = lang hoeklyn.

Waarom is die som van die vlieër se binnehoeke 360 ° ?

2.4 In hierdie skets is dieselfde vlieër van vraag 2.3 in drie driehoeke met gelyke oppervlaktes verdeel (ignoreer die stippellyn). x = boonste gedeelte van die lang hoeklyn.

3. Die volgende probleme bevat inligting waaruit jy ‘n vergelyking moet vorm. Gebruik die kenmerke van die figure. As jy dan die vergelyking oplos, gee dit jou die waarde van x .

3.1 Twee van die hoeke van die ruit is 3 x en x onderskeidelik.

Hoekom kan hierdie figuur nie ‘n vierkant wees nie?

3.2 In die parallelogram is die groottes van twee teenoorstaande binnehoeke x + 30° en 2 x – 10° onderskeidelik.

Verduidelik waarom die gemerkte hoek 110 ° is .

3.3 Die trapesium het twee hoeke van x – 20° en x + 40° onderskeidelik.

Waarom is dit nie ‘n parallelogram nie?

3.4 Die kort hoeklyn van die ruit is getrek; die hoeklyn maak een hoek van 50°, en een binnehoek van die ruit is gemerk met ‘n x .

Werkvel vir Leereenheid 1

Problemeblad vir Leereenheid 1

Questions & Answers

are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wiskunde graad 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11055/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 9' conversation and receive update notifications?

Ask