<< Chapter < Page Chapter >> Page >

b) Gooi nou die dobbelsteen 15 keer. Teken die aantal kere wat die 3 bo lê as die dobbelsteen val, aan (maak ’n regmerkie).

Skryf jou antwoord as ’n breuk met noemer 15. _____________________________________________________________________

Is jou antwoord na aan een sesde? (gebruik jou sakrekenaar) ___________________

Kan jy dit verklaar? __________________________________________________

_____________________________________________________________________

20.5 Het jy geweet?

Dit sou blote toeval wees, indien jy ’n waarskynlikheid van een sesde hierbo gekry het! Die eksperimentele waarskynlikheid is gebaseer op dit wat jy werklik gedoen het. Die teoretiese waarskynlikheid is net ’n poging om te voorspel wat sal gebeur.

Hoe meer kere jy die dobbelsteen gooi, hoe nader behoort die praktiese en teoretiese waarskynlikheid aan mekaar te wees.

20.6 BRAINTEASER

  • What is the probability that you will get 7, if you throw two dice at the same time and add the numbers that are showing upwards?

_____________________________________________________________________

_____________________________________________________________________

21. Tyd vir selfassessering

  • Kleur die gesiggie in wat waar is van jou:
Ek kan die begrip “waarskynlikheid” verduidelik
Ek weet wat ’n waarskynlikheid van 0 beteken
Ek weet wat ’n waarskynlikheid van 1 beteken
Ek weet wat die “formule” is om waarskynlikheid te bepaal
Ek kon die waarskynlikheid in die gegewe vrae hierbo korrek bereken

22. Vir die PRET!

  • Gebruik die gegewe koördinate en ontsyfer die kode!

(9,9) (9,2) (1,10) (1,10) (3,2) (1,0) (6,10) (2,6)

............................................ .........................

(4,1) (3,2) (1,10) (1,10) (5,8) (8,5) (6,10) (1,2) (6,10)

............................................ ......................................

(8,5) (6,10) (1,2) (1,8) (8,5) (9,9) (3,8) (9,1) (5,8) (6,10)!!

................. ......................................................................!!

Assessering

Leeruitkomste 5: Die leerder is in staat om data te versamel, op te som, voor te stel en krities te ontleed om gevolgtrekkings en voorspellings te maak en om toevallige variasie te interpreteer en te bepaal.

Assesseringstandaard 5.9: Dit is duidelik wanneer die leerder data wat op verskeie maniere voorgestel is krities lees en interpreteer ten einde gevolgtrekkings en voorspellings te maak wat sensitief is

Assesseringstandaard 5.10: Dit is duidelik wanneer die leerder eenvoudige eksperimente uitvoer waarvan die moontlike uitkomste ewe waarskynlik is.

Module toets

1. Verklein die padda tot ’n skaal 2:1.

(3)

2. Watter soort transformasie is in die volgende figuur gebruik?

_____________________________________________

(1)

3. Verduidelik die volgende begrippe:

a) steekproef: ____________________________________________________

_____________________________________________________________________

_____________________________________________________________________

(2)

b) waarskynlikheid: ________________________________________________

_____________________________________________________________________

_____________________________________________________________________

(2)

4. Kyk na die volgende:

’n Groep leerders se punte uit 15 was soos volg:

6; 11 ; 12 ; 15 ; 9 ; 10 ; 10 ; 10 ; 8 ; 15

a) Bereken die modus: _____________________________________________

_____________________________________________________________________

_____________________________________________________________________

(2)

b) Bereken die mediaan: _____________________________________________

_____________________________________________________________________

_____________________________________________________________________

(2)

c) Bereken die rekenkundige gemiddelde:______________________________

_____________________________________________________________________

_____________________________________________________________________

(2)

5. Kyk na die grafiek en beantwoord die volgende vrae:

a) Wat word hierdie soort grafiek genoem?

_____________________________________________________________________

(1)

b) Waarom “spring” die grafiek van 0 na 6?

_____________________________________________________________________

_____________________________________________________________________

(1)

c) Hoeveel leerders is 7 jaar oud?

_____________________________________________________________________

(1)

d) Hoeveel meer leerders is 9 jaar oud as 12 jaar oud?

_____________________________________________________________________

(1)

e) Hoeveel leerders is daar altesaam in die skool?

_____________________________________________________________________

(1)

6. Stel die inligting soos gegee by nr. 4 op ’n lyngrafiek voor.

(3)

7. Wat is die waarskynlikheid dat jy ’n swart bal sal uithaal in ’n houer met 12 rooi, 6 groen, 4 swart, 2 geel en 8 blou balle?

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

(2)

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask