<< Chapter < Page Chapter >> Page >
This module discusses how to solve quadratic equations by factoring.

When we multiply, we put things together: when we factor, we pull things apart. Factoring is a critical skill in simplifying functions and solving equations.

There are four basic types of factoring. In each case, I will start by showing a multiplication problem—then I will show how to use factoring to reverse the results of that multiplication.

“pulling out” common factors

This type of factoring is based on the distributive property , which (as you know) tells us that:

2x 4x 2 7x + 3 = 8x 3 14 x 2 + 6x size 12{2x left (4x rSup { size 8{2} } - 7x+3 right )=8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x} {}

When we factor, we do that in reverse. So we would start with an expression such as 8x 3 14 x 2 + 6x size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x} {} and say “Hey, every one of those terms is divisible by 2. Also, every one of those terms is divisible by x size 12{x} {} . So we “factor out,” or “pull out,” a 2x size 12{2x} {} .

8x 3 14 x 2 + 6x = 2x __ __ + __ size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x=2x left ("__" - "__"+"__" right )} {}

For each term, we see what happens when we divide that term by 2x size 12{2x} {} . For instance, if we divide 8x 3 size 12{8x rSup { size 8{3} } } {} by 2x size 12{2x} {} the answer is 4x 2 size 12{4x rSup { size 8{2} } } {} . Doing this process for each term, we end up with:

8x 3 14 x 2 + 6x = 2x 4x 2 7x + 3 size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x=2x left (4x rSup { size 8{2} } - 7x+3 right )} {}

As you can see, this is just what we started with, but in reverse. However, for many types of problems, this factored form is easier to work with.

As another example, consider 6x + 3 size 12{6x+3} {} . The common factor in this case is 3. When we factor a 3 out of the 6x size 12{6x} {} , we are left with 2x size 12{2x} {} . When we factor a 3 out of the 3, we are left with...what? Nothing? No, we are left with 1, since we are dividing by 3.

6x + 3 = 3 2x + 1 size 12{6x+3=3 left (2x+1 right )} {}

There are two key points to take away about this kind of factoring.

  1. This is the simplest kind of factoring. Whenever you are trying to factor a complicated expression, always begin by looking for common factors that you can pull out.
  2. A common factor must be common to all the terms. For instance, 8x 3 14 x 2 + 6x + 7 size 12{8x rSup { size 8{3} } - "14"x rSup { size 8{2} } +6x+7} {} has no common factor, since the last term is not divisible by either 2 or x size 12{x} {} .

Factoring perfect squares

The second type of factoring is based on the “squaring” formulae that we started with:

x + a 2 = x 2 + 2 ax + a 2 size 12{ left (x+a right ) rSup { size 8{2} } =x rSup { size 8{2} } +2 ital "ax"+a rSup { size 8{2} } } {}
x a 2 = x 2 2 ax + a 2 size 12{ left (x - a right ) rSup { size 8{2} } =x rSup { size 8{2} } - 2 ital "ax"+a rSup { size 8{2} } } {}

For instance, if we see x 2 + 6x + 9 size 12{x rSup { size 8{2} } +6x+9} {} , we may recognize the signature of the first formula: the middle term is three doubled , and the last term is three squared . So this is x + 3 2 size 12{ left (x+3 right ) rSup { size 8{2} } } {} . Once you get used to looking for this pattern, it is easy to spot.

x 2 + 10 x + 25 = x + 5 2 size 12{x rSup { size 8{2} } +"10"x+"25"= left (x+5 right ) rSup { size 8{2} } } {}
x 2 + 2x + 1 = x + 1 2 size 12{x rSup { size 8{2} } +2x+1= left (x+1 right ) rSup { size 8{2} } } {}

And so on. If the middle term is negative , then we have the second formula:

x 2 8x + 16 = x 4 2 size 12{x rSup { size 8{2} } - 8x+"16"= left (x - 4 right ) rSup { size 8{2} } } {}
x 2 14 x + 49 = x 7 2 size 12{x rSup { size 8{2} } - "14"x+"49"= left (x - 7 right ) rSup { size 8{2} } } {}

This type of factoring only works if you have exactly this case : the middle number is something doubled , and the last number is that same something squared . Furthermore, although the middle term can be either positive or negative (as we have seen), the last term cannot be negative.

All this may make it seem like such a special case that it is not even worth bothering about. But as you will see with “completing the square” later in this unit, this method is very general, because even if an expression does not look like a perfect square, you can usually make it look like one if you want to—and if you know how to spot the pattern.

The difference between two squares

The third type of factoring is based on the third of our basic formulae:

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (lecture) readings in precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11354/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (lecture) readings in precalculus' conversation and receive update notifications?

Ask