4.1 Perimeter

 Page 1 / 1

Memorandum

3.2

250 mm

320 mm

3.3

a) 135 mm

b) 135 mm

c) 104 mm

d) 174 mm

3.4

a) area = 2 x (b + d) or area = (2 x b) + (2 x d)

b) area= 2 x (f+g) or area = (2 x f) + (2 x g)

c) area = 4 x k

d) area = (2 x a) + (2 x e) or area = 2 x (a + e)

3.5

By means of a piece of string or wool

3.6

a) 3 100 km

b) 500 km

c) 350 km

d) 15,45 h

38.

a) 42

c) R2,681,70

5.

a) 27

b) 27

c) 39

d) 18

e) 18

f) 9

g) 14

h) 2

i) 12

j) 60

k) 60

l) 64

m) 72

n) 125

o) 108

Activity: perimeter [lo 2.5, lo 4.2, lo 4.3, lo 1.8]

3. PERIMETER

3.1 IMPORTANT to REMEMBER!

The perimeter of any figure is the total length around a figure, in other words the sum of the lengths of all the sides.

Perimeter is thus a length and is measured in millimetres, metres or kilometres. The most accurate method to determine perimeter is to use compasses and a ruler.

3.2 What is the perimeter of your pentagon and octagon above?

Pentagon:

Octagon:

3.3 Use your ruler and determine the perimeter of the following polygons:

a)

______________________________________

b)

_____________________________________

c)

_____________________________________

d)

_____________________________________

3.4 Work together with a friend. Work out formulas to determine the perimeters of the following quadrilaterals:

a) A rectangle with a length of b centimetres and breadth of d centimetres:

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

b) A parallelogram with sides f centimetres and g centimetres:

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

c) A rhombus with sides k millimetres:

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

d) A kite with sides a millimetres and e millimetres:

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

3.5 How will you determine the perimeter of the following figures?

a)

b)

______________________________________________________________

______________________________________________________________

______________________________________________________________

3.6 A grade 7 class leaves on a tour.

a) Look at the accompanying sketch and use the scale to find out how far they will travel.

1 : 100

1 cm = 100km

b) What is the actual distance from E to B? _____________________________

c) What is the actual distance from B to D? _____________________________

c) If the bus travels at 110 km/h, how long will it take for the bus to travel from A to F if it doesn’t stop along the way?

____________________________________________________________________

3.8 The sketch shows a camp for sheep that needs to be fenced.

a) If the horizontal poles are 2,7 m long, and you leave an opening of 1,5 m for a gate, how many upright poles are you going to need?

_____________________________________________________________________

_____________________________________________________________________

b) Where are you going to leave an opening for a gate? Motivate your answer.

_____________________________________________________________________

_____________________________________________________________________

c) If the upright poles cost R63,85 each, how much will the farmer have to spend?

_____________________________________________________________________

_____________________________________________________________________

4. Time for self-assessment

 Tick the applicable block: Yes No I could find solutions to the brainteasers. I was able to draw a regular pentagon. I was able to draw a regular octagon. I can explain the concept “perimeter”. I could calculate accurately the perimeter of the polygons. I was able to formulate and write down the formulas for perimeter of the following: rectangle parallelogram rhombus kite I was able to calculate accurately, according to scale, the distance that the Grade 7’s would have covered on their tour. I was able to correctly calculate the number of poles that the farmer needed for his camp.

5. Let us test your mental maths now!

Complete the following as quickly and accurately as possible:

a) 6 + 7 x 3 = ............

b) 6 + (7 x 3) = ............

c) (6 + 7) x 3 = ............

d) 9 x 6 ÷ 3 = ............

e) 9 x (6 ÷ 3) = ............

f) 36 ÷ (12 ÷ 3) = ............

g) 13 – 5 + 6 = ............

h) 13 – (5 + 6) = ............

i) 14 – (5 – 3) = ............

j) 4 x 3 x 5 = ............

k) 5 x (3 x 4) = ............

l) 43 = ............

m) 32 x 23 = ............

n) 53 = ............

o) 33 x 22 = ............

• Complete by colouring:
 I did WELL REASONABLY NOT SO WELL

Assessment

Learning Outcome 2: The learner will be able to recognise, describe and represent patterns and relationships, as well as to solve problems using algebraic language and skills.

Assessment Standard 2.5: We know this when the learner solves or completes number sentences by inspection or by trial-and-improvement, checking the solutions by substitution (e.g. 2 x - 8 = 4).

Learning Outcome 4: The learner will be able to use appropriate measuring units, instruments and formulae in a variety of contexts.

Assessment Standard 4.2: We know this when the learner solves problems;

Assessment Standard 4.3: We know this when the learner solves problems using a range of strategies;

Learning Outcome 1: The learner will be able to recognise, describe and represent numbers and their relationships, and to count, estimate, calculate and check with competence and confidence in solving problems.

Assessment Standard 1.8: We know this when the learner performs mental calculations involving squares of natural numbers to at least 10 2 and cubes of natural numbers to at least 5 3 .

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!