<< Chapter < Page Chapter >> Page >

Making connections: take-home investigation—filament observations

Find a lightbulb with a filament. Look carefully at the filament and describe its structure. To what points is the filament connected?

We can obtain an expression for the relationship between current and drift velocity by considering the number of free charges in a segment of wire, as illustrated in [link] . The number of free charges per unit volume is given the symbol n size 12{n} {} and depends on the material. The shaded segment has a volume Ax size 12{ ital "Ax"} {} , so that the number of free charges in it is nAx size 12{ ital "nAx"} {} . The charge Δ Q size 12{DQ} {} in this segment is thus qnAx size 12{ ital "qnAx"} {} , where q size 12{q} {} is the amount of charge on each carrier. (Recall that for electrons, q size 12{q} {} is 1 . 60 × 10 19 C size 12{ - 1 "." "60" times "10" rSup { size 8{ - "19"} } "C"} {} .) Current is charge moved per unit time; thus, if all the original charges move out of this segment in time Δ t size 12{Dt} {} , the current is

I = Δ Q Δ t = qnAx Δ t . size 12{I = { {ΔQ} over {Δt} } = { { ital "qnAx"} over {Δt} } "."} {}

Note that x / Δ t size 12{x/Δt} {} is the magnitude of the drift velocity, v d , since the charges move an average distance x size 12{x} {} in a time Δ t size 12{Dt} {} . Rearranging terms gives

I = nqAv d , size 12{I= ital "nqAv" rSub { size 8{"d"} } } {}

where I size 12{I } {} is the current through a wire of cross-sectional area A size 12{A} {} made of a material with a free charge density n size 12{n} {} . The carriers of the current each have charge q size 12{q} {} and move with a drift velocity of magnitude v d size 12{v rSub { size 8{d} } } {} .

Charges are shown moving through a section of a conducting wire. The charges have a drift velocity v sub d along the length of the wire, shown by an arrow pointing to the right. The volume of a segment of the wire is equal to A times x, where x equals the product of the drift velocity, v sub d, and time t. A cross section of the wire is marked as A, and the length of the section is x.
All the charges in the shaded volume of this wire move out in a time t size 12{t} {} , having a drift velocity of magnitude v d = x / t size 12{v rSub { size 8{d} } =x/t} {} . See text for further discussion.

Note that simple drift velocity is not the entire story. The speed of an electron is much greater than its drift velocity. In addition, not all of the electrons in a conductor can move freely, and those that do might move somewhat faster or slower than the drift velocity. So what do we mean by free electrons? Atoms in a metallic conductor are packed in the form of a lattice structure. Some electrons are far enough away from the atomic nuclei that they do not experience the attraction of the nuclei as much as the inner electrons do. These are the free electrons. They are not bound to a single atom but can instead move freely among the atoms in a “sea” of electrons. These free electrons respond by accelerating when an electric field is applied. Of course as they move they collide with the atoms in the lattice and other electrons, generating thermal energy, and the conductor gets warmer. In an insulator, the organization of the atoms and the structure do not allow for such free electrons.

Calculating drift velocity in a common wire

Calculate the drift velocity of electrons in a 12-gauge copper wire (which has a diameter of 2.053 mm) carrying a 20.0-A current, given that there is one free electron per copper atom. (Household wiring often contains 12-gauge copper wire, and the maximum current allowed in such wire is usually 20 A.) The density of copper is 8 . 80 × 10 3 kg/m 3 size 12{8 "." "80" times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } } {} .


We can calculate the drift velocity using the equation I = nqAv d . The current I = 20.0 A is given, and q = 1.60 × 10 19 C is the charge of an electron. We can calculate the area of a cross-section of the wire using the formula A = π r 2 , where r is one-half the given diameter, 2.053 mm. We are given the density of copper, 8.80 × 10 3 kg/m 3 , and the periodic table shows that the atomic mass of copper is 63.54 g/mol. We can use these two quantities along with Avogadro’s number, 6.02 × 10 23 atoms/mol , to determine n , the number of free electrons per cubic meter.


First, calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore, is the same as the number of copper atoms per m 3 . We can now find n as follows:

n = 1 e atom × 6 . 02 × 10 23 atoms mol × 1 mol 63 . 54 g × 1000 g kg × 8.80 × 10 3 kg 1 m 3 = 8 . 342 × 10 28 e /m 3 .

The cross-sectional area of the wire is

A = π r 2 = π 2.053 × 10 −3 m 2 2 = 3.310 × 10 –6 m 2 .

Rearranging I = n q A v d to isolate drift velocity gives

v d = I nqA = 20.0 A ( 8 . 342 × 10 28 /m 3 ) ( –1 . 60 × 10 –19 C ) ( 3 . 310 × 10 –6 m 2 ) = –4 . 53 × 10 –4 m/s.


The minus sign indicates that the negative charges are moving in the direction opposite to conventional current. The small value for drift velocity (on the order of 10 4 m/s size 12{"10" rSup { size 8{ - 4} } `"m/s"} {} ) confirms that the signal moves on the order of 10 12 size 12{"10" rSup { size 8{"12"} } } {} times faster (about 10 8 m/s size 12{"10" rSup { size 8{8} } `"m/s"} {} ) than the charges that carry it.

Questions & Answers

what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
what is the coefficient of -4×
Mehri Reply
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
I'm 13 and I understand it great
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10
how do they get the third part x = (32)5/4
kinnecy Reply
make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
I rally confuse this number And equations too I need exactly help
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
greetings from Iran
salut. from Algeria
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, General physics ii phy2202ca. OpenStax CNX. Jul 05, 2013 Download for free at http://legacy.cnx.org/content/col11538/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'General physics ii phy2202ca' conversation and receive update notifications?