<< Chapter < Page Chapter >> Page >

F net = w f size 12{F rSub { size 8{"net " \lline \lline } } =w rSub { size 8{ \lline \lline } } - f} {} ,

and substituting this into Newton’s second law, a = F net m size 12{a rSub { size 8{ \lline \lline } } = { {F rSub { size 8{"net " \lline \lline } } } over {m} } } {} , gives

a = F net m = w f m = mg sin ( 25º ) f m size 12{a rSub { size 8{ \lline \lline } } = { {F rSub { size 8{"net " \lline \lline } } } over {m} } = { {w rSub { size 8{ \lline \lline } } - f} over {m} } = { { ital "mg""sin" \( "25"° \) - f} over {m} } } {} .

We substitute known values to obtain

a = ( 60 . 0 kg ) ( 9 . 80 m/s 2 ) ( 0 . 4226 ) 45 . 0 N 60 . 0 kg size 12{a rSub { size 8{ \lline \lline } } = { { \( "60" "." "0 kg" \) \( 9 "." "80 m/s" rSup { size 8{2} } \) \( 0 "." "4226" \) - "45" "." "0 N"} over {"60" "." "0 kg"} } } {} ,

which yields

a = 3 . 39 m/s 2 size 12{a rSub { size 8{ \lline \lline } } =3 "." "39 m/s" rSup { size 8{2} } } {} ,

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is a = g sin θ size 12{a=g"sin"θ} {} , regardless of mass . This is related to the previously discussed fact that all objects fall with the same acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with the same acceleration (if the angle is the same).

Resolving weight into components

Vector arrow W for weight is acting downward. It is resolved into components that are parallel and perpendicular to a surface that has a slope at angle theta to the horizontal. The coordinate direction x is labeled parallel to the sloped surface, with positive x pointing uphill. The coordinate direction y is labeled perpendicular to the sloped surface, with positive y pointing up from the surface. The components of w are w parallel, represented by an arrow pointing downhill along the sloped surface, and w perpendicular, represented by an arrow pointing into the sloped surface. W parallel is equal to w sine theta, which is equal to m g sine theta. W perpendicular is equal to w cosine theta, which is equal to m g cosine theta.
An object rests on an incline that makes an angle θ with the horizontal.

When an object rests on an incline that makes an angle θ size 12{θ} {} with the horizontal, the force of gravity acting on the object is divided into two components: a force acting perpendicular to the plane, w size 12{w rSub { size 8{ ortho } } } {} , and a force acting parallel to the plane, w size 12{w rSub { size 8{ \lline \lline } } } {} . The perpendicular force of weight, w size 12{w rSub { size 8{ ortho } } } {} , is typically equal in magnitude and opposite in direction to the normal force, N size 12{N} {} . The force acting parallel to the plane, w size 12{w rSub { size 8{ \lline \lline } } } {} , causes the object to accelerate down the incline. The force of friction, f size 12{f} {} , opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle θ size 12{θ} {} to the horizontal, then the magnitudes of the weight components are

w = w sin ( θ ) = mg sin ( θ ) size 12{w rSub { size 8{ \lline \lline } } =w"sin" \( θ \) = ital "mg""sin" \( θ \) " "} {}

and

w = w cos ( θ ) = mg cos ( θ ) size 12{w rSub { size 8{ ortho } } =w"cos" \( θ \) = ital "mg""cos" \( θ \) } {} .

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right triangle formed by the three weight vectors. Notice that the angle θ size 12{θ} {} of the incline is the same as the angle formed between w size 12{w} {} and w size 12{w rSub { size 8{ ortho } } } {} . Knowing this property, you can use trigonometry to determine the magnitude of the weight components:

cos ( θ ) = w w w = w cos ( θ ) = mg cos ( θ ) alignl { stack { size 12{"cos" \( θ \) = { {w rSub { size 8{ ortho } } } over {w} } } {} #w rSub { size 8{ ortho } } =w"cos" \( θ \) = ital "mg""cos" \( θ \) {} } } {}

sin ( θ ) = w w w = w sin ( θ ) = mg sin ( θ ) alignl { stack { size 12{"sin" \( θ \) = { {w rSub { size 8{ \lline \lline } } } over {w} } } {} #w rSub { size 8{ \lline \lline } } =w"sin" \( θ \) = ital "mg""sin" \( θ \) {} } } {}

Take-home experiment: force parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the board. How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on the board? Try two more angles. What does this show?

Tension

A tension     is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The word “tension comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to other parts of the body are called tendons . Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is important to understand that tension is a pull in a connector. In contrast, consider the phrase: “You can’t push a rope.” The tension force pulls outward along the two ends of a rope.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, College physics arranged for cpslo phys141. OpenStax CNX. Dec 23, 2014 Download for free at http://legacy.cnx.org/content/col11718/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics arranged for cpslo phys141' conversation and receive update notifications?

Ask