# 3.9 Exercise supplement

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. The basic operations with real numbers are presented in this chapter. The concept of absolute value is discussed both geometrically and symbolically. The geometric presentation offers a visual understanding of the meaning of |x|. The symbolic presentation includes a literal explanation of how to use the definition. Negative exponents are developed, using reciprocals and the rules of exponents the student has already learned. Scientific notation is also included, using unique and real-life examples.This module contains the exercise supplement for the chapter "Basic Operations with Real Numbers".

## Signed numbers ( [link] )

For the following problems, find $-a$ if $a$ is

27

$-27$

$-15$

$-\frac{8}{9}$

$\frac{8}{9}$

$-\left(-3\right)$

$k$

$-k$

## Absolute value ( [link] )

Simplify the following problems.

$|8|$

$|-3|$

3

$-|16|$

$-\left(-|12|\right)$

12

$-|0|$

## Addition of signed numbers ( [link] ) - multiplication and division of signed numbers ( [link] )

Simplify the following problems.

$4+\left(-6\right)$

$-2$

$-16+\left(-18\right)$

$3-\left(-14\right)$

17

$\left(-5\right)\left(2\right)$

$\left(-6\right)\left(-3\right)$

18

$\left(-1\right)\left(-4\right)$

$\left(4\right)\left(-3\right)$

$-12$

$\frac{-25}{5}$

$\frac{-100}{-10}$

10

$16-18+5$

$\frac{\left(-2\right)\left(-4\right)+10}{-5}$

$-\frac{18}{5}$

$\frac{-3\left(-8+4\right)-12}{4\left(3+6\right)-2\left(-8\right)}$

$\frac{-1\left(-3-2\right)-4\left(-4\right)}{-13+10}$

$-7$

$-\left(2-10\right)$

$0-6\left(-4\right)\left(-2\right)$

$-48$

## Multiplication and division of signed numbers ( [link] )

Find the value of each expression for the following problems.

$P=R-C$ . Find $P$ if $R=3000$ and $C=3800$ .

$z=\frac{x-u}{s}$ . Find $z$ if $x=22,u=30$ , and $s=8$ .

$-1$

$P=n\left(n-1\right)\left(n-2\right)$ . Find $P$ if $n=-3$ .

## Negative exponents ( [link] )

Write the expressions for the following problems using only positive exponents.

${a}^{-1}$

$\frac{1}{a}$

${c}^{-6}$

${a}^{3}{b}^{-2}{c}^{-5}$

$\frac{{a}^{3}}{{b}^{2}{c}^{5}}$

${\left(x+5\right)}^{-2}$

${x}^{3}{y}^{2}{\left(x-3\right)}^{-7}$

$\frac{{x}^{3}{y}^{2}}{{\left(x-3\right)}^{7}}$

${4}^{-2}{a}^{-3}{b}^{-4}{c}^{5}$

${2}^{-1}{x}^{-1}$

$\frac{1}{2x}$

${\left(2x+9\right)}^{-3}7{x}^{4}{y}^{-5}{z}^{-2}{\left(3x-1\right)}^{2}{\left(2x+5\right)}^{-1}$

${\left(-2\right)}^{-1}$

$\frac{1}{-2}$

$\frac{1}{{x}^{-4}}$

$\frac{7x}{{y}^{-3}{z}^{-2}}$

$7x{y}^{3}{z}^{2}$

$\frac{4{c}^{-2}}{{b}^{-6}}$

$\frac{{3}^{-2}{a}^{-5}{b}^{-9}{c}^{2}}{{x}^{2}{y}^{-4}{z}^{-1}}$

$\frac{{c}^{2}{y}^{4}z}{9{a}^{5}{b}^{9}{x}^{2}}$

$\frac{{\left(z-6\right)}^{-2}}{{\left(z+6\right)}^{-4}}$

$\frac{16{a}^{5}{b}^{-2}}{-2{a}^{3}{b}^{-5}}$

$-8{a}^{2}{b}^{3}$

$\frac{-44{x}^{3}{y}^{-6}{z}^{-8}}{-11{x}^{-2}{y}^{-7}{z}^{-8}}$

${8}^{-2}$

$\frac{1}{64}$

${9}^{-1}$

${2}^{-5}$

$\frac{1}{32}$

${\left({x}^{3}\right)}^{-2}$

${\left({a}^{2}b\right)}^{-3}$

$\frac{1}{{a}^{6}{b}^{3}}$

${\left({x}^{-2}\right)}^{-4}$

${\left({c}^{-1}\right)}^{-4}$

${c}^{4}$

${\left({y}^{-1}\right)}^{-1}$

${\left({x}^{3}{y}^{-4}{z}^{-2}\right)}^{-6}$

$\frac{{y}^{24}{z}^{12}}{{x}^{18}}$

${\left(\frac{{x}^{-6}}{{y}^{-2}}\right)}^{-5}$

${\left(\frac{2{b}^{-7}{c}^{-8}{d}^{4}}{{x}^{-2}{y}^{3}z}\right)}^{-4}$

$\frac{{b}^{28}{c}^{32}{y}^{12}{z}^{4}}{16{d}^{16}{x}^{8}}$

## Scientific notation ( [link] )

Write the following problems using scientific notation.

8739

73567

$7.3567×{10}^{4}$

21,000

746,000

$7.46×{10}^{5}$

8866846

$0.0387$

$3.87×{10}^{-2}$

$0.0097$

$0.376$

$3.76×{10}^{-1}$

$0.0000024$

$0.000000000000537$

$5.37×{10}^{-13}$

46,000,000,000,000,000

Convert the following problems from scientific form to standard form.

$3.87×{10}^{5}$

$387,000$

$4.145×{10}^{4}$

$6.009×{10}^{7}$

$60,090,000$

$1.80067×{10}^{6}$

$3.88×{10}^{-5}$

$0.0000388$

$4.116×{10}^{-2}$

$8.002×{10}^{-12}$

$0.000000000008002$

$7.36490×{10}^{-14}$

$2.101×{10}^{15}$

$2,101,000,000,000,000$

$6.7202×{10}^{26}$

$1×{10}^{6}$

$1,000,000$

$1×{10}^{7}$

$1×{10}^{9}$

$1,000,000,000$

Find the product for the following problems. Write the result in scientific notation.

$\left(1×{10}^{5}\right)\left(2×{10}^{3}\right)$

$\left(3×{10}^{6}\right)\left(7×{10}^{7}\right)$

$2.1×{10}^{14}$

$\left(2×{10}^{14}\right)\left(8×{10}^{19}\right)$

$\left(9×{10}^{2}\right)\left(3×{10}^{75}\right)$

$2.7×{10}^{78}$

$\left(1×{10}^{4}\right)\left(1×{10}^{5}\right)$

$\left(8×{10}^{-3}\right)\left(3×{10}^{-6}\right)$

$2.4×{10}^{-8}$

$\left(9×{10}^{-5}\right)\left(2×{10}^{-1}\right)$

$\left(3×{10}^{-2}\right)\left(7×{10}^{2}\right)$

$2.1×{10}^{1}$

$\left(7.3×{10}^{4}\right)\left(2.1×{10}^{-8}\right)$

$\left(1.06×{10}^{-16}\right)\left(2.815×{10}^{-12}\right)$

$2.9839×{10}^{-28}$

$\left(9.3806×{10}^{52}\right)\left(1.009×{10}^{-31}\right)$

what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform. By   By  By By   