<< Chapter < Page Chapter >> Page >
This module covers word problems involving simultaneous equations.

Many students approach math with the attitude that “I can do the equations, but I’m just not a ‘word problems’ person.” No offense, but that’s like saying “I’m pretty good at handling a tennis racket, as long as there’s no ball involved.” The only point of handling the tennis racket is to hit the ball. The only point of math equations is to solve problems. So if you find yourself in that category, try this sentence instead: “I’ve never been good at word problems. There must be something about them I don’t understand, so I’ll try to learn it.”

Actually, many of the key problems with word problems were discussed in the very beginning of the “Functions” unit, in the discussion of variable descriptions. So this might be a good time to quickly re-read that section. If you can correctly identify the variables, you’re half-way through the hard part of a word problem. The other half is translating the sentences of the problem into equations that use those variables.

Let’s work through an example, very carefully.

Simultaneous equation word problem

A roll of dimes and a roll of quarters lie on the table in front of you. There are three more quarters than dimes. But the quarters are worth three times the amount that the dimes are worth. How many of each do you have?

  • Identify and label the variables.
    • There are actually two different, valid ways to approach this problem. You could make a variable that represents the number of dimes; or you could have a variable that represents the value of the dimes. Either way will lead you to the right answer. However, it is vital to know which one you’re doing! If you get confused half-way through the problem, you will end up with the wrong answer.
    Let’s try it this way:
    d is the number of dimes
    q is the number of quarters
  • Translate the sentences in the problem into equations.
    • “There are three more quarters than dimes” q = d + 3
    • “The quarters are worth three times the amount that the dimes are worth” 25 q = 3 ( 10 d ) size 12{ rightarrow "25"q=3 \( "10"d \) } {}
    • This second equation relies on the fact that if you have q size 12{q} {} quarters, they are worth a total of 25 q size 12{"25"q} {} cents.
  • Solve.
    • We can do this by elimination or substitution. Since the first equation is already solved for q size 12{q} {} , I will substitute that into the second equation and then solve.
    25 d + 3 = 3 10 d size 12{"25" left (d+3 right )=3 left ("10"d right )} {}
    25 d + 75 = 30 d size 12{"25"d+"75"="30"d} {}
    75 = 5d size 12{"75"=5d} {}
    d = 15 size 12{d="15"} {}
    q = 18 size 12{q="18"} {}

So, did it work? The surest check is to go all the way back to the original problem—not the equations, but the words. We have concluded that there are 15 dimes and 18 quarters.

“There are three more quarters than dimes.”

“The quarters are worth three times the amount that the dimes are worth.” size 12{ rightarrow } {} Well, the quarters are worth 18 25 = $ 4 . 50 size 12{"18" cdot "25"=$4 "." "50"} {} . The dimes are worth 15 10 = $ 1 . 50 size 12{"15" cdot "10"=$1 "." "50"} {} .

Got questions? Get instant answers now!

Questions & Answers

What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Advanced algebra ii: conceptual explanations. OpenStax CNX. May 04, 2010 Download for free at http://cnx.org/content/col10624/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Advanced algebra ii: conceptual explanations' conversation and receive update notifications?

Ask