# 3.5 Rational inequality  (Page 4/6)

 Page 4 / 6

Inclusion and exclusion of critical points

Based on the discussion above, we summarize inclusion or exclusion of critical points here :

1: Question of inclusion of critical points arises when inequality involved is not strict.

2: Critical points belonging to numerator are included in solution set.

3: Critical points belonging to denominator are excluded from solution set.

3: Critical points belonging to both numerator and denominator are excluded from solution set.

## Solution of rational inequalities using wavy curve method

Wavy curve method is a modified sign diagram method. This method has the advantage that we do not need to test sign of interval as required in earlier case. The steps involved are :

1: Factorize numerator and denominator into linear factors.

2: Make coefficients of x positive in all linear factors. This step may require to change sign of “x” in the linear factor by multiplying inequality with -1. Note that this multiplication will change the inequality sign as well. For example, “less than” will become “greater than” etc.

3: Equate each linear factor to zero and find values of x in each case. The values are called critical points.

4: Identify distinct critical points on real number line. The “n” numbers of distinct critical points divide real number lines in (n+1) sub-intervals.

5: The sign of rational function in the right most interval is positive. Alternate sign in adjoining intervals on the left.

5: If a linear factor is repeated even times, then sign of function will not alternate about the critical point corresponding to linear factor in question.

We need to exclude exception points i.e. critical points of denominator from solution set. Further, it is important to understand that signs of intervals as determined using this method are not the signs of function – rather signs of modified function in which sign of “x” has changed. However, if we are not required to change the sign of “x” i.e. to modify the function, then signs of intervals are also signs of function. We shall though keep this difference in mind, but we shall refer signs of intervals as sign scheme or diagram in this case also.

Problem : Apply wavy curve method to find the interval of x for the inequality given :

$\frac{x}{1-x}\ge 0$

Solution : We change the sign of "x" in the denominator to positive by multiplying both sides of inequality with -1. Note that this changes the inequality sign as well.

$\frac{x}{x-1}\le 0$

Here, critical points are :

$x=0,1$

The critical points are marked on the real number line. Starting with positive sign in the right most interval, we denote signs of adjacent intervals by alternating sign.

Thus, interval of x as solution of inequality is :

$⇒0\le x<1$

We do not include "1" as it reduces denominator to zero.

Problem : Find solution of the rational inequality given by :

$\frac{3{x}^{2}+6x-15}{\left(2x-1\right)\left(x+3\right)}\ge 1$

Solution : We first convert the given inequality to standard form f(x) ≥ 0.

$⇒\frac{3{x}^{2}+6x-15}{\left(2x-1\right)\left(x+3\right)}-1\ge 0$

$⇒\frac{3{x}^{2}+6x-15-\left(2x-1\right)\left(x+3\right)}{\left(2x-1\right)\left(x+3\right)}\ge 0$

$⇒\frac{3{x}^{2}+6x-15-\left(2{x}^{2}+5x-3\right)}{\left(2x-1\right)\left(x+3\right)}\ge 0$

$⇒\frac{{x}^{2}+x-12}{\left(2x-1\right)\left(x+3\right)}\ge 0$ $⇒\frac{{x}^{2}+4x-3x-12}{\left(2x-1\right)\left(x+3\right)}\ge 0$ $⇒\frac{\left(x-3\right)\left(x+4\right)}{\left(2x-1\right)\left(x+3\right)}\ge 0$

Critical points are -4, -3, 1/2, 3. Corresponding sign diagram is :

The solution of inequality is :

$⇒x\in \left(-\infty ,-4\right]\cup \left(-3,1/2\right)\cup \left[3,\infty \right)$

We do not include "-3" and "1" as they reduce denominator to zero.

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
What is power set
Period of sin^6 3x+ cos^6 3x
Period of sin^6 3x+ cos^6 3x By Katherina jennife... By Frank Levy By OpenStax By OpenStax By Madison Christian By Rhodes By Stephen Voron By Sandhills MLT By Rohini Ajay By Anh Dao