# 3.5 Humidity, evaporation, and boiling  (Page 2/9)

 Page 2 / 9

Relative humidity is related to the partial pressure of water vapor in the air. At 100% humidity, the partial pressure is equal to the vapor pressure, and no more water can enter the vapor phase. If the partial pressure is less than the vapor pressure, then evaporation will take place, as humidity is less than 100%. If the partial pressure is greater than the vapor pressure, condensation takes place. In everyday language, people sometimes refer to the capacity of air to “hold” water vapor, but this is not actually what happens. The water vapor is not held by the air. The amount of water in air is determined by the vapor pressure of water and has nothing to do with the properties of air.

Saturation vapor density of water
Temperature $\left(\text{º}\text{C}\right)$ Vapor pressure (Pa) Saturation vapor density (g/m 3 )
−50 4.0 0.039
−20 $1\text{.}\text{04}×{\text{10}}^{2}$ 0.89
−10 $2\text{.}\text{60}×{\text{10}}^{2}$ 2.36
0 $6\text{.}\text{10}×{\text{10}}^{2}$ 4.84
5 $8\text{.}\text{68}×{\text{10}}^{2}$ 6.80
10 $1\text{.}\text{19}×{\text{10}}^{3}$ 9.40
15 $1\text{.}\text{69}×{\text{10}}^{3}$ 12.8
20 $2\text{.}\text{33}×{\text{10}}^{3}$ 17.2
25 $3\text{.}\text{17}×{\text{10}}^{3}$ 23.0
30 $4\text{.}\text{24}×{\text{10}}^{3}$ 30.4
37 $6\text{.}\text{31}×{\text{10}}^{3}$ 44.0
40 $7\text{.}\text{34}×{\text{10}}^{3}$ 51.1
50 $1\text{.}\text{23}×{\text{10}}^{4}$ 82.4
60 $1\text{.}\text{99}×{\text{10}}^{4}$ 130
70 $3\text{.}\text{12}×{\text{10}}^{4}$ 197
80 $4\text{.}\text{73}×{\text{10}}^{4}$ 294
90 $7\text{.}\text{01}×{\text{10}}^{4}$ 418
95 $8\text{.}\text{59}×{\text{10}}^{4}$ 505
100 $1\text{.}\text{01}×{\text{10}}^{5}$ 598
120 $1\text{.}\text{99}×{\text{10}}^{5}$ 1095
150 $4\text{.}\text{76}×{\text{10}}^{5}$ 2430
200 $1\text{.}\text{55}×{\text{10}}^{6}$ 7090
220 $2\text{.}\text{32}×{\text{10}}^{6}$ 10,200

## Calculating density using vapor pressure

[link] gives the vapor pressure of water at $\text{20}\text{.}0\text{º}\text{C}$ as $2\text{.}\text{33}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{Pa}\text{.}$ Use the ideal gas law to calculate the density of water vapor in $\text{g}/{\text{m}}^{3}$ that would create a partial pressure equal to this vapor pressure. Compare the result with the saturation vapor density given in the table.

Strategy

To solve this problem, we need to break it down into a two steps. The partial pressure follows the ideal gas law,

$\text{PV}=\text{nRT,}$

where $n$ is the number of moles. If we solve this equation for $n/V$ to calculate the number of moles per cubic meter, we can then convert this quantity to grams per cubic meter as requested. To do this, we need to use the molecular mass of water, which is given in the periodic table.

Solution

1. Identify the knowns and convert them to the proper units:

1. temperature $T=\text{20}\text{º}\text{C=293 K}$
2. vapor pressure $P$ of water at $\text{20}\text{º}\text{C}$ is $2\text{.}\text{33}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{Pa}$
3. molecular mass of water is $\text{18}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{g/mol}$

2. Solve the ideal gas law for $n/V$ .

$\frac{n}{V}=\frac{P}{\text{RT}}$

3. Substitute known values into the equation and solve for $n/V$ .

$\frac{n}{V}=\frac{P}{\text{RT}}=\frac{2\text{.}\text{33}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{Pa}}{\left(8\text{.}\text{31}\phantom{\rule{0.25em}{0ex}}\text{J/mol}\cdot \text{K}\right)\left(\text{293}\phantom{\rule{0.25em}{0ex}}\text{K}\right)}=0\text{.}\text{957}\phantom{\rule{0.25em}{0ex}}{\text{mol/m}}^{3}$

4. Convert the density in moles per cubic meter to grams per cubic meter.

$\rho =\left(0\text{.}\text{957}\frac{\text{mol}}{{\text{m}}^{3}}\right)\left(\frac{\text{18}\text{.}\text{0 g}}{\text{mol}}\right)=\text{17}\text{.}2\phantom{\rule{0.25em}{0ex}}{\text{g/m}}^{3}$

Discussion

The density is obtained by assuming a pressure equal to the vapor pressure of water at $\text{20}\text{.}0\text{º}\text{C}$ . The density found is identical to the value in [link] , which means that a vapor density of $\text{17}\text{.}2\phantom{\rule{0.25em}{0ex}}{\text{g/m}}^{3}$ at $\text{20}\text{.}0\text{º}\text{C}$ creates a partial pressure of $2\text{.}\text{33}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{Pa,}$ equal to the vapor pressure of water at that temperature. If the partial pressure is equal to the vapor pressure, then the liquid and vapor phases are in equilibrium, and the relative humidity is 100%. Thus, there can be no more than 17.2 g of water vapor per ${\text{m}}^{3}$ at $\text{20}\text{.}0\text{º}\text{C}$ , so that this value is the saturation vapor density at that temperature. This example illustrates how water vapor behaves like an ideal gas: the pressure and density are consistent with the ideal gas law (assuming the density in the table is correct). The saturation vapor densities listed in [link] are the maximum amounts of water vapor that air can hold at various temperatures.

#### Questions & Answers

what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!