# 3.5 Constrained optimization with inequality constraints  (Page 2/2)

With some additional assumptions, it can be shown that the KKT conditions can find a global minimizer.

Definition 3 A function $f$ is said to be affine over $\Omega$ if $f\left({\sum }_{i}^{n}{a}_{i}{x}_{i}\right)={\sum }_{1}^{n}{a}_{i}f\left({x}_{i}\right)$ for all ${x}_{1},...,{x}_{n}\in \Omega$ and all weights $\left\{{a}_{i}\right\}$ obeying ${\sum }_{i}^{n}{a}_{i}=1$ .

Theorem 2 (Karush-Kuhn-Tucker Sufficient Conditions) If $f$ and ${h}_{j}$ , $j=1,...,m$ are convex functions and ${g}_{i}$ , $i=1,...,n$ are affine functions, and if the KKT condition are satisfied at a feasible point ${x}_{0}\in \Omega$ then ${x}_{0}$ is a global minimizer of $f$ over $\Omega$ .

Fix ${x}_{1}\in \Omega$ let $d={x}_{1}-{x}_{0}$ . Define a functional $x\left(t\right)=t{x}_{1}+\left(1-t\right){x}_{0}={x}_{0}+td$ over $t\in \left[0,1\right]$ . Then, define the constraints limited over the set of points $x\left(t\right)$ :

$\begin{array}{cc}\hfill {G}_{i}\left(t\right)& ={g}_{i}\left(x\left(t\right)\right)={g}_{i}\left(t{x}_{1}+\left(1-t\right){x}_{0}\right)=t\phantom{\rule{0.277778em}{0ex}}g\left({x}_{i}\right)+\left(1-t\right)g\left({x}_{0}\right)=0,\hfill \\ \hfill {H}_{j}\left(t\right)& ={h}_{j}\left(x\left(t\right)\right)={h}_{j}\left(t{x}_{1}+\left(1-t\right){x}_{0}\right)\le t{h}_{j}\left({x}_{1}\right)+\left(1-t\right){h}_{j}\left({x}_{0}\right)\le 0;\hfill \end{array}$

Therefore, all points $x\left(t\right)\in \Omega$ are feasible. Furthermore, note that ${H}_{j}\left(0\right)={h}_{j}\left({x}_{0}\right)=0\ge {H}_{j}\left(t\right)={h}_{j}\left({x}_{t}\right)$ if $j\in J\left({x}_{0}\right)$ . Now, we compute the derivatives of these two functions with respect to $t$ :

$\frac{\partial G}{\partial t}=0=\partial {g}_{i}\left({x}_{0},d\right)=⟨\nabla {g}_{i}\left({x}_{0}\right),d⟩,$

and for $j\in J\left({x}_{0}\right)$ ,

$0\phantom{\rule{0.277778em}{0ex}}\ge \phantom{\rule{0.277778em}{0ex}}\frac{\partial {H}_{j}}{\partial t}=\partial {h}_{j}\left({x}_{0},d\right)=⟨\nabla {h}_{j}\left({x}_{0}\right),d⟩.$

Now consider the function $F\left(t\right)=f\left(x\left(t\right)\right)$ : its derivative is given by

$\frac{\partial F}{\partial t}=\partial f\left({x}_{0},d\right)=⟨\nabla f\left({x}_{0}\right),d⟩=-\sum _{i=1}^{n}⟨\nabla {g}_{i},d⟩{x}_{i}-\sum _{i=1}^{n}{\mu }_{j}⟨\nabla {h}_{j},d⟩\ge 0,$

where we use the third KKT condition. Since $f\left(x\right)$ is convex and $x\left(t\right)$ is affine, then $F\left(t\right)=f\left(x\left(t\right)\right)$ is convex in $t\in \left[0,1\right]$ . Thus $\frac{\partial F}{\partial t}$ is nondecreasing and $\frac{\partial F\left(t\right)}{\partial t}\ge \frac{\partial F\left(0\right)}{\partial t}\ge 0$ for $t\in \left[0,1\right]$ . Thus, $F\left(1\right)\ge F\left(0\right)$ or $f\left({x}_{1}\right)\ge f\left({x}_{0}\right)$ . Since ${x}_{1}$ was arbitrary, ${x}_{0}$ is a global minimum of $f$ on $\Omega$ .

Example 2 (Channel Capacity) The Shannon capacity of an additive white Gaussian noise channel is given by $C=\frac{1}{2}{log}_{2}\left(1+\frac{P}{N}\right)$ , where $P$ is the transmitted signal power and $N$ is the noise variance. Assume that $n$ channels are available with a total transmission power ${P}_{T}={\sum }_{i=1}^{n}{P}_{i}$ available among the channels, where ${P}_{i}$ denotes the power in the ${i}^{th}$ channel. We wish to assign a power profile $P={\left[{P}_{1},...,{P}_{n}\right]}^{T}$ that maximizes the total capacity for the set of channels

$C\left(P\right)=\sum _{i=1}^{n}C\left({P}_{i}\right)=\sum _{i=1}^{n}\frac{1}{2}{log}_{2}\left(1,+,\frac{{P}_{i}}{{N}_{i}}\right),$

where ${N}_{i}$ represents the variance of the noise in the ${i}^{th}$ channel.

To solve the problem, we set up an objective function to be minimized

$f\left(P\right)=-C\left(P\right)=-\sum _{i=1}^{n}C\left({P}_{i}\right)=-\sum _{i=1}^{n}\frac{1}{2}{log}_{2}\left(1+\frac{{P}_{i}}{{N}_{i}}\right)$

and also set up the constraints

$\begin{array}{cc}\hfill g\left(P\right)& =\sum _{i=1}^{n}{P}_{i}-{P}_{T}={\mathbf{1}}^{T}P-{P}_{T},\hfill \\ \hfill {h}_{i}\left(P\right)& =-{P}_{i}=-{e}_{i}^{T}P,\phantom{\rule{3.33333pt}{0ex}}i=1,...,n,\hfill \end{array}$

as the values of the powers must be nonnegative. We start by computing the gradients of these functions: for $f$ , we must compute the directional derivative

$\begin{array}{cc}\hfill \delta f\left(p;h\right)& =\frac{\partial }{\partial \alpha }{\left(f\left(p+\alpha h\right)\right)|}_{\alpha =0}={\left(\left(-,\sum _{i=1}^{n},\frac{{h}_{i}/{N}_{i}}{2\left(ln2\right)\left(1,+,\frac{{P}_{i}}{{N}_{i}},+,\alpha ,\frac{{h}_{i}}{{N}_{i}}\right)}\right)|}_{\alpha =0},\hfill \\ & =-\sum _{i=1}^{n}\frac{{h}_{i}}{2{N}_{i}\left(ln2\right)\left(1,+,\frac{{P}_{i}}{{N}_{i}}\right)}=-\sum _{i=1}^{n}\frac{{h}_{i}}{2\left(ln2\right)\left({N}_{i}+{P}_{i}\right)}=⟨\nabla f\left(p\right),h⟩,\hfill \end{array}$

where the gradient has entries ${\left(\nabla f\left(p\right)\right)}_{i}=-{\left(2\left(ln2\right)\left({N}_{i}+{P}_{i}\right)\right)}^{-1}$ .

For the constraints, it is straightforward to see that $\nabla g\left(P\right)=\mathbf{1}$ and $\nabla {h}_{i}\left(P\right)=-{e}_{i}$ , $i=1,...,n$ .

We begin by assuming that the solution ${P}^{*}$ is a regular point. Then the KKT conditions give that for some $\lambda$ and nonnegative ${\mu }_{1},...,{\mu }_{m}$ we must have

$\begin{array}{cc}\hfill \sum _{i=1}^{n}{\mu }_{i}{P}_{i}^{*}& =0,\hfill \\ \hfill -\frac{1}{2\left(ln2\right)\left({N}_{i}+{P}_{i}^{*}\right)}+\lambda -{\mu }_{i}& =0,\phantom{\rule{3.33333pt}{0ex}}i=1,...,n.\hfill \end{array}$

The second set of constraints can be written as

$\begin{array}{cc}\hfill \frac{1}{2\left(ln2\right)\left({N}_{i}+{P}_{i}^{*}\right)}& =\lambda -{\mu }_{i},\hfill \\ \hfill {N}_{i}+{P}_{i}^{*}& =\frac{1}{2\left(ln2\right)\left(\lambda -{\mu }_{i}\right)}.\hfill \end{array}$

Consider each inequality constraint ${h}_{i}$ .

• If ${h}_{i}$ is inactive, then ${P}_{i}^{*}>0$ and ${\mu }_{i}=0$ . Then,
$\begin{array}{cc}\hfill {N}_{i}+{P}_{i}^{*}& =\frac{1}{2\lambda \left(ln2\right)},\hfill \\ \hfill {P}_{i}^{*}& =\frac{1}{2\lambda \left(ln2\right)}-{N}_{i}>0.\hfill \end{array}$
• If ${h}_{i}$ is active, then ${P}_{i}^{*}=0$ and so
$\begin{array}{cc}\hfill {N}_{i}& =\frac{1}{2\left(ln2\right)\left(\lambda -{\mu }_{i}\right)},\hfill \\ \hfill {\mu }_{i}& =\lambda -\frac{1}{2{N}_{i}\left(ln2\right)}\ge 0,\hfill \\ \hfill \frac{1}{2{N}_{i}\left(ln2\right)}& \le \lambda ,\hfill \\ \hfill \frac{1}{2\lambda \left(ln2\right)}& \le {N}_{i}.\hfill \end{array}$

To simplify, write $r=\frac{1}{2\lambda \left(ln2\right)}$ ; then, we have two possibilities for each channel $i$ from above:

• If $r-{N}_{i}>0$ (i.e., if ${N}_{i} ), then ${P}_{i}^{*}=r-{N}_{i}$ .
• If $r-{N}_{i}\le 0$ (i.e., if $r\le {N}_{i}$ ) then ${P}_{i}^{*}=0$ .

Thus the power is allocated among the channels using the formula ${P}_{i}^{*}=max\left(0,r-{N}_{i}\right)$ , and the value of $r$ is chosen so that the total power constraints is met:

$\sum _{i=1}^{n}max\left(0,r-{N}_{i}\right)={P}_{T}.$

This is the famous water-filling solution to the multiple channel capacity problem, illustrated in [link] . Waterfilling solution to the multiple channel power allocation problem, which is solved using Karush-Kuhn-Tucker conditions.

#### Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Signal theory. OpenStax CNX. Oct 18, 2013 Download for free at http://legacy.cnx.org/content/col11542/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signal theory' conversation and receive update notifications? By   By By     