# 3.5 Alternating current versus direct current  (Page 3/10)

 Page 3 / 10

## Power losses are less for high-voltage transmission

(a) What current is needed to transmit 100 MW of power at 200 kV? (b) What is the power dissipated by the transmission lines if they have a resistance of $1\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\Omega$ ? (c) What percentage of the power is lost in the transmission lines?

Strategy

We are given ${P}_{\text{ave}}=\text{100 MW}$ , ${V}_{\text{rms}}=\text{200 kV}$ , and the resistance of the lines is $R=1\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\Omega$ . Using these givens, we can find the current flowing (from $P=\text{IV}$ ) and then the power dissipated in the lines ( $P={I}^{2}R$ ), and we take the ratio to the total power transmitted.

Solution

To find the current, we rearrange the relationship ${P}_{\text{ave}}={I}_{\text{rms}}{V}_{\text{rms}}$ and substitute known values. This gives

${I}_{\text{rms}}=\frac{{P}_{\text{ave}}}{{V}_{\text{rms}}}=\frac{\text{100}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}\text{W}}{\text{200}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{V}}=\text{500 A}.$

Solution

Knowing the current and given the resistance of the lines, the power dissipated in them is found from ${P}_{\text{ave}}={I}_{\text{rms}}^{2}R$ . Substituting the known values gives

${P}_{\text{ave}}={I}_{\text{rms}}^{2}R=\left(\text{500 A}{\right)}^{2}\left(1\text{.}\text{00}\phantom{\rule{0.25em}{0ex}}\Omega \right)=\text{250 kW}.$

Solution

The percent loss is the ratio of this lost power to the total or input power, multiplied by 100:

$\text{% loss=}\frac{\text{250 kW}}{\text{100 MW}}×\text{100}=0\text{.}\text{250 %}.$

Discussion

One-fourth of a percent is an acceptable loss. Note that if 100 MW of power had been transmitted at 25 kV, then a current of 4000 A would have been needed. This would result in a power loss in the lines of 16.0 MW, or 16.0% rather than 0.250%. The lower the voltage, the more current is needed, and the greater the power loss in the fixed-resistance transmission lines. Of course, lower-resistance lines can be built, but this requires larger and more expensive wires. If superconducting lines could be economically produced, there would be no loss in the transmission lines at all. But, as we shall see in a later chapter, there is a limit to current in superconductors, too. In short, high voltages are more economical for transmitting power, and AC voltage is much easier to raise and lower, so that AC is used in most large-scale power distribution systems.

It is widely recognized that high voltages pose greater hazards than low voltages. But, in fact, some high voltages, such as those associated with common static electricity, can be harmless. So it is not voltage alone that determines a hazard. It is not so widely recognized that AC shocks are often more harmful than similar DC shocks. Thomas Edison thought that AC shocks were more harmful and set up a DC power-distribution system in New York City in the late 1800s. There were bitter fights, in particular between Edison and George Westinghouse and Nikola Tesla, who were advocating the use of AC in early power-distribution systems. AC has prevailed largely due to transformers and lower power losses with high-voltage transmission.

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!