<< Chapter < Page Chapter >> Page >

Solution

Because v tot size 12{v rSub { size 8{ bold "tot"} } } {} is the vector sum of the v w and v p , its x - and y -components are the sums of the x - and y -components of the wind and plane velocities. Note that the plane only has vertical component of velocity so v p x = 0 and v p y = v p . That is,

v tot x = v w x size 12{v rSub { size 8{"tot"x} } =v rSub { size 8{wx} } } {}

and

v tot y = v w y + v p . size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{wx} } +v rSub { size 8{p} } "."} {}

We can use the first of these two equations to find v w x size 12{v rSub { size 8{ ital "wx"} } } {} :

v w y = v tot x = v tot cos 110º . size 12{v rSub { size 8{wx} } =v rSub { size 8{"tot"x} } =v rSub { size 8{"tot"} } "cos110" rSup { size 8{o} } "."} {}

Because v tot = 38 . 0 m / s size 12{v rSub { size 8{ ital "tot"} } ="38" "." 0m/s} {} and cos 110º = 0.342 size 12{"cos""110º""=""-""0.342"} {} we have

v w y = ( 38.0 m/s ) ( –0.342 ) = –13 m/s.

The minus sign indicates motion west which is consistent with the diagram.

Now, to find v w y size 12{v rSub { size 8{ ital "wy"} } } {} we note that

v tot y = v w y + v p size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{wx} } +v rSub { size 8{p} } } {}

Here v tot y = v tot sin 110º size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{"tot"} }  = v rSub { size 8{"tot"} }  "sin 110º"} {} ; thus,

v w y = ( 38 . 0 m/s ) ( 0 . 940 ) 45 . 0 m/s = 9 . 29 m/s. size 12{v rSub { size 8{wy} } = \( "38" "." 0" m/s" \) \( 0 "." "940" \) - "45" "." 0" m/s"= - 9 "." "29"" m/s."} {}

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity v w x size 12{v rSub { size 8{wx} } } {} and v w y size 12{v rSub { size 8{wy} } } {} are known, we can find the magnitude and direction of v w size 12{v rSub { size 8{w} } } {} . First, the magnitude is

v w = v w x 2 + v w y 2 = ( 13 . 0 m/s ) 2 + ( 9 . 29 m/s ) 2

so that

v w = 16 . 0 m/s . size 12{v rSub { size 8{w} } ="16" "." 0" m/s."} {}

The direction is:

θ = tan 1 ( v w y / v w x ) = tan 1 ( 9 . 29 / 13 . 0 ) size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{wy} } /v rSub { size 8{wx} } \) ="tan" rSup { size 8{ - 1} } \( - 9 "." "29"/ - "13" "." 0 \) } {}

giving

θ = 35 . . size 12{θ="35" "." 6º"."} {}

Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as seen in [link] . Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative velocities and classical relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame . These velocities are called relative velocities . For example, the velocity of an airplane relative to an air mass is different from its velocity relative to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero). Relative velocities are one aspect of relativity    , which is defined to be the study of how different observers moving relative to each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and Isaac Newton. Classical relativity is limited to situations where speeds are less than about 1% of the speed of light—that is, less than 3,000 km/s size 12{"3,000 km/s"} {} . Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the observer on the ship, and so he sees them fall straight down the mast. (See [link] .) To the observer on shore, the binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are falling. This observer sees the curved path shown in [link] . Although the paths look different to the different observers, each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to correctly specify the velocities relative to the observer.

Questions & Answers

A charge of 1.6*10^-6C is placed in a uniform electric field in a density 2*5^10Nc^-1, what is the magnitude of the electric force exerted on the charge?
Omotosho Reply
what's phenomena
Enoch Reply
Phenomena is an observable fact or event.
Love
Prove that 1/d+1/v=1/f
James Reply
What interference
Moyinoluwa Reply
What is a polarized light called?
Moyinoluwa
what is a half life
Mama Reply
the time taken for a radioactive element to decay by half of its original mass
ken
what is radioactive element
mohammed
Half of the total time required by a radioactive nuclear atom to totally disintegrate
Justice
radioactive elements are those with unstable nuclei(ie have protons more than neutrons, or neutrons more than protons
Justice
in other words, the radioactive atom or elements have unequal number of protons to neutrons.
Justice
state the laws of refraction
Fabian
state laws of reflection
Fabian
Why does a bicycle rider bends towards the corner when is turning?
Mac
When do we say that the stone thrown vertically up wards accelerate negatively?
Mac
Give two importance of insulator placed between plates of a capacitor.
Mac
Macho had a shoe with a big sole moving in mudy Road, shanitah had a shoe with a small sole. Give reasons for those two cases.
Mac
when was the name taken from
Biola Reply
retardation of a car
Biola
when was the name retardation taken
Biola
did you mean a motion with velocity decreases uniformly by the time? then, the vector acceleration is opposite direction with vector velocity
Sphere
Atomic transmutation
Basirat Reply
An atom is the smallest indivisible particular of an element
mosco Reply
what is an atomic
Awene Reply
reference on periodic table
Titus Reply
what Is resonance?
Mozam Reply
phenomena of increasing amplitude from normal position of a substance due to some external source.
akif
What is a black body
Amey Reply
Black body is the ideal body can absorb and emit all radiation
Ahmed
the emissivity of black body is 1. it is a perfect absorber and emitter of heat.
Busayo
Why is null measurement accurate than standard voltmeter
Neemat Reply
that is photoelectric effect ?
Sabir Reply
It is the emission of electrons when light hits a material
Anita
Yeah
yusuf
is not just a material
Neemat
it is the surface of a metal
Neemat
what is the formula for time of flight ,maxjmum height and range
agangan Reply
what is an atom
Awene
an atom is the smallest particle of a element which can take part in chemical reaction.
Israel
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask