<< Chapter < Page Chapter >> Page >

Solution

Because v tot size 12{v rSub { size 8{ bold "tot"} } } {} is the vector sum of the v w and v p , its x - and y -components are the sums of the x - and y -components of the wind and plane velocities. Note that the plane only has vertical component of velocity so v p x = 0 and v p y = v p . That is,

v tot x = v w x size 12{v rSub { size 8{"tot"x} } =v rSub { size 8{wx} } } {}

and

v tot y = v w y + v p . size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{wx} } +v rSub { size 8{p} } "."} {}

We can use the first of these two equations to find v w x size 12{v rSub { size 8{ ital "wx"} } } {} :

v w y = v tot x = v tot cos 110º . size 12{v rSub { size 8{wx} } =v rSub { size 8{"tot"x} } =v rSub { size 8{"tot"} } "cos110" rSup { size 8{o} } "."} {}

Because v tot = 38 . 0 m / s size 12{v rSub { size 8{ ital "tot"} } ="38" "." 0m/s} {} and cos 110º = 0.342 size 12{"cos""110º""=""-""0.342"} {} we have

v w y = ( 38.0 m/s ) ( –0.342 ) = –13 m/s.

The minus sign indicates motion west which is consistent with the diagram.

Now, to find v w y size 12{v rSub { size 8{ ital "wy"} } } {} we note that

v tot y = v w y + v p size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{wx} } +v rSub { size 8{p} } } {}

Here v tot y = v tot sin 110º size 12{v rSub { size 8{"tot"y} } =v rSub { size 8{"tot"} }  = v rSub { size 8{"tot"} }  "sin 110º"} {} ; thus,

v w y = ( 38 . 0 m/s ) ( 0 . 940 ) 45 . 0 m/s = 9 . 29 m/s. size 12{v rSub { size 8{wy} } = \( "38" "." 0" m/s" \) \( 0 "." "940" \) - "45" "." 0" m/s"= - 9 "." "29"" m/s."} {}

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity v w x size 12{v rSub { size 8{wx} } } {} and v w y size 12{v rSub { size 8{wy} } } {} are known, we can find the magnitude and direction of v w size 12{v rSub { size 8{w} } } {} . First, the magnitude is

v w = v w x 2 + v w y 2 = ( 13 . 0 m/s ) 2 + ( 9 . 29 m/s ) 2

so that

v w = 16 . 0 m/s . size 12{v rSub { size 8{w} } ="16" "." 0" m/s."} {}

The direction is:

θ = tan 1 ( v w y / v w x ) = tan 1 ( 9 . 29 / 13 . 0 ) size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{wy} } /v rSub { size 8{wx} } \) ="tan" rSup { size 8{ - 1} } \( - 9 "." "29"/ - "13" "." 0 \) } {}

giving

θ = 35 . . size 12{θ="35" "." 6º"."} {}

Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as seen in [link] . Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative velocities and classical relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame . These velocities are called relative velocities . For example, the velocity of an airplane relative to an air mass is different from its velocity relative to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero). Relative velocities are one aspect of relativity    , which is defined to be the study of how different observers moving relative to each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and Isaac Newton. Classical relativity is limited to situations where speeds are less than about 1% of the speed of light—that is, less than 3,000 km/s size 12{"3,000 km/s"} {} . Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the observer on the ship, and so he sees them fall straight down the mast. (See [link] .) To the observer on shore, the binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are falling. This observer sees the curved path shown in [link] . Although the paths look different to the different observers, each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial to correctly specify the velocities relative to the observer.

Questions & Answers

write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
Gabriel Reply
how does a model differ from a theory
Friday Reply
what is vector quantity
Ridwan Reply
Vector quality have both direction and magnitude, such as Force, displacement, acceleration and etc.
Besmellah
Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?
Jack Reply
what's electromagnetic induction
Chinaza Reply
electromagnetic induction is a process in which conductor is put in a particular position and magnetic field keeps varying.
Lukman
wow great
Salaudeen
what is mutual induction?
je
mutual induction can be define as the current flowing in one coil that induces a voltage in an adjacent coil.
Johnson
how to undergo polarization
Ajayi Reply
show that a particle moving under the influence of an attractive force mu/y³ towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v²k² and distance uk²/√u-vk as origin
Gabriel Reply
show that a particle moving under the influence of an attractive force mu/y^3 towards the axis x. show that if it be projected from the point (0,k) with the component velocities U and V parallel to the axis of x and y, it will not strike the axis of x unless u>v^2k^2 and distance uk^2/√u-k as origin
Gabriel Reply
No idea.... Are you even sure this question exist?
Mavis
I can't even understand the question
Ademiye
yes it was an assignment question "^"represent raise to power pls
Gabriel
mu/y³ u>v²k² uk²/√u-vk please help me out
Gabriel
An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10kg . Pendulum 2 has a bob with a mass of 100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .
Imtiaz Reply
no ideas
Augstine
if u at an angle of 12 degrees their period will be same so as their velocity, that means they both move simultaneously since both both hovers at same length meaning they have the same length
Ademiye
Modern cars are made of materials that make them collapsible upon collision. Explain using physics concept (Force and impulse), how these car designs help with the safety of passengers.
Isaac Reply
calculate the force due to surface tension required to support a column liquid in a capillary tube 5mm. If the capillary tube is dipped into a beaker of water
Mildred Reply
find the time required for a train Half a Kilometre long to cross a bridge almost kilometre long racing at 100km/h
Ademiye
method of polarization
Ajayi
What is atomic number?
Makperr Reply
The number of protons in the nucleus of an atom
Deborah
type of thermodynamics
Yinka Reply
oxygen gas contained in a ccylinder of volume has a temp of 300k and pressure 2.5×10Nm
Taheer Reply
why the satellite does not drop to the earth explain
Emmanuel Reply
what is a matter
Yinka
what is matter
Yinka
what is matter
Yinka
what is a matter
Yinka
I want the nuclear physics conversation
Mohamed
because space is a vacuum and anything outside the earth 🌎 can not come back without an act of force applied to it to leave the vacuum and fall down to the earth with a maximum force length of 30kcm per second
Clara
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask