<< Chapter < Page Chapter >> Page >
An introduction to eigenvalues and eigenfunctions for continuous time linear time invariant systems.

Introduction

Prior to reading this module, the reader should already have some experience with linear algebra and should specifically be familiar with the eigenvectors and eigenvalues of linear operators. A linear time invariant system is a linear operator defined on a function space that commutes with every time shift operator on that function space. Thus, we can also consider the eigenvector functions, or eigenfunctions, of a system. It is particularly easy to calculate the output of a system when an eigenfunction is the input as the output is simply the eigenfunction scaled by the associated eigenvalue. As will be shown, continuous time complex exponentials serve as eigenfunctions of linear time invariant systems operating on continuous time signals.

Eigenfunctions of lti systems

Consider a linear time invariant system H with impulse response h operating on some space of infinite length continuous time signals. Recall that the output H ( x ( t ) ) of the system for a given input x ( t ) is given by the continuous time convolution of the impulse response with the input

H ( x ( t ) ) = - h ( τ ) x ( t - τ ) d τ .

Now consider the input x ( t ) = e s t where s C . Computing the output for this input,

H ( e s t ) = - h ( τ ) e s ( t - τ ) d τ = - h ( τ ) e s t e - s τ d τ = e s t - h ( τ ) e - s τ d τ .

Thus,

H ( e s t ) = λ s e s t

where

λ s = - h ( τ ) e - s τ d τ

is the eigenvalue corresponding to the eigenvector e s t .

There are some additional points that should be mentioned. Note that, there still may be additional eigenvalues of a linear time invariant system not described by e s t for some s C . Furthermore, the above discussion has been somewhat formally loose as e s t may or may not belong to the space on which the system operates. However, for our purposes, complex exponentials will be accepted as eigenvectors of linear time invariant systems. A similar argument using continuous time circular convolution would also hold for spaces finite length signals.

Eigenfunction of lti systems summary

As has been shown, continuous time complex exponential are eigenfunctions of linear time invariant systems operating on continuous time signals. Thus, it is particularly simple to calculate the output of a linear time invariant system for a complex exponential input as the result is a complex exponential output scaled by the associated eigenvalue. Consequently, representations of continuous time signals in terms of continuous time complex exponentials provide an advantage when studying signals. As will be explained later, this is what is accomplished by the continuous time Fourier transform and continuous time Fourier series, which apply to aperiodic and periodic signals respectively.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask