<< Chapter < Page Chapter >> Page >

We are already acquainted with quadratic equation and its roots. In this module, we shall study quadratic expression from the point of view of a function. It is a polynomial function of degree 2. The general form of quadratic expression/ function is :

f x = a x 2 + b x + c ; a , b , c R , a > 0

Elements of quadratic equation

Quadratic equation

Quadratic equation is obtained by equating quadratic function to zero. General form of quadratic equation corresponding to quadratic function is :

a x 2 + b x + c = 0 ; a , b , c R , a > 0

Discriminant of quadratic equation

Nature of a given quadratic function is best understood in terms of discriminant, D, of corresponding quadratic equation. This is given as :

D = b 2 4 a c

Roots of quadratic equation

Quadratic equation is obtained by equating quadratic function to zero. Quadratic equation has at most two roots. The roots are given by :

α = - b D 2 a = - b b 2 4 a c 2 a

β = - b + D 2 a = - b + b 2 4 a c 2 a

Properties of roots of quadratic equation

1 : If D>0, then roots are real and distinct.

2 : If D=0, then roots are real and equal.

3 : If D<0, then roots are complex conjugates with non-zero imaginary part.

4 : If D>0; a,b,c∈T (rational numbers) and D is a perfect square, then roots are rational.

5 : If D>0; a,b,c∈T (rational numbers) and D is not a perfect square, then roots are radical conjugates.

6 : If D>0; a=1;b,c∈Z (integer numbers) and roots are rational, then roots are integers.

7 : If a quadratic equation has more than two roots, then the function is an identity in x and a=b=c=0.

8 : If a quadratic equation has one real root and a,b,c∈R, then other root is also real.

Elements of quadratic function

Zeroes of quadratic function

The real roots of the quadratic equation are zeroes of quadratic function. The zeroes of quadratic function are real values of x for which value of quadratic function becomes zero. On graph, zeros are the points at which graph intersects y=0 i.e. x-axis.

Graph of quadratic function

Graph reveals important characteristics of quadratic function. The graph of quadratic function is a parabola. Working with the quadratic function, we have :

y = a x 2 + b x + c = a x 2 + b a x + c a

In order to complete square, we add and subtract b 2 / 4 a 2 as :

y = a x 2 + b a x + b 2 4 a 2 + c a b 2 4 a 2

y = a { x + b 2 a 2 - b 2 4 a c 4 a }

y + b 2 4 a c 4 a = a x + b 2 a 2

y + D 4 a = a x + b 2 a 2

Y = a X 2


X = x + b 2 a and Y = y + D 4 a

Graph of quadratic function

The graph is parabola.

Clearly, Y = a X 2 is an equation of parabola having its vertex given by (-b/2a, -D/4a). When a>0, parabola opens up and when a<0, parabola opens down. Further, parabola is symmetric about x=-b/2a.

Maximum and minimum values of quadratic function

The graph of quadratic function extends on either sides of x-axis. Its domain, therefore, is R. On the other hand, value of function extends from vertex to either positive or negative infinity, depending on whether “a” is positive or negative.

When a>0, the graph of quadratic function is parabola opening up. The minimum and maximum values of the function are given by :

y min = - D 4 a at x = - b 2 a

y max

Clearly, range of the function is [-D/4a, ∞).

When a<0, the graph of quadratic function is parabola opening down. The maximum and minimum values of the function are given by :

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
What is power set
Satyabrata Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply
Period of sin^6 3x+ cos^6 3x
Sneha Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?