# 3.3 Projectile motion  (Page 6/16)

 Page 6 / 16
$R=\frac{{v}_{0}^{2}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}{2\theta }_{0}}{g}\text{,}$

where ${v}_{0}$ is the initial speed and ${\theta }_{0}$ is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that $R$ is very small compared with the circumference of the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther to fall than it would on level ground. (See [link] .) If the initial speed is great enough, the projectile goes into orbit. This possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth orbits. In Addition of Velocities , we will examine the addition of velocities, which is another important aspect of two-dimensional kinematics and will also yield insights beyond the immediate topic.

## Phet explorations: projectile motion

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

## Summary

• Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
• To solve projectile motion problems, perform the following steps:
1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical components. The components of position $\mathbf{s}$ are given by the quantities $x$ and $y$ , and the components of the velocity $\mathbf{v}$ are given by ${v}_{x}=v\phantom{\rule{0.25em}{0ex}}\text{cos}\phantom{\rule{0.25em}{0ex}}\theta$ and ${v}_{y}=v\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}\theta$ , where $v$ is the magnitude of the velocity and $\theta$ is its direction.
2. Analyze the motion of the projectile in the horizontal direction using the following equations:
$\text{Horizontal motion}\left({a}_{x}=0\right)$
$x={x}_{0}+{v}_{x}t$
${v}_{x}={v}_{0x}={\mathbf{\text{v}}}_{\text{x}}=\text{velocity is a constant.}$
3. Analyze the motion of the projectile in the vertical direction using the following equations:
$\text{Vertical motion}\left(\text{Assuming positive direction is up;}\phantom{\rule{0.25em}{0ex}}{a}_{y}=-g=-9\text{.}\text{80 m}{\text{/s}}^{2}\right)$
$y={y}_{0}+\frac{1}{2}\left({v}_{0y}+{v}_{y}\right)t$
${v}_{y}={v}_{0y}-\text{gt}$
$y={y}_{0}+{v}_{0y}t-\frac{1}{2}{\text{gt}}^{2}$
${v}_{y}^{2}={v}_{0y}^{2}-2g\left(y-{y}_{0}\right).$
4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:
$s=\sqrt{{x}^{2}+{y}^{2}}$
$\theta ={\text{tan}}^{-1}\left(y/x\right)$
$v=\sqrt{{v}_{x}^{2}+{v}_{y}^{2}}$
${\theta }_{\text{v}}={\text{tan}}^{-1}\left({v}_{y}/{v}_{x}\right).$
• The maximum height $h$ of a projectile launched with initial vertical velocity ${v}_{0y}$ is given by
$h=\frac{{v}_{0y}^{2}}{2g}.$
• The maximum horizontal distance traveled by a projectile is called the range . The range $R$ of a projectile on level ground launched at an angle ${\theta }_{0}$ above the horizontal with initial speed ${v}_{0}$ is given by
$R=\frac{{v}_{0}^{2}\phantom{\rule{0.25em}{0ex}}\text{sin}\phantom{\rule{0.25em}{0ex}}{2\theta }_{0}}{g}.$

#### Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

### Read also:

#### Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Cc test coll. OpenStax CNX. Dec 15, 2015 Download for free at http://legacy.cnx.org/content/col11717/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cc test coll' conversation and receive update notifications?

 By David Corey By Cath Yu By Jonathan Long By Ryan Lowe By Richley Crapo By By Richley Crapo By Kevin Moquin By Danielrosenberger By Madison Christian