# 3.25 Sspd_chapter 1_part 11_solid state of matter  (Page 4/5)

Therefore

…………………… 1.96

Therefore

……………………………………………………………1.97

Therefore in semiconductors the mean free path will be the product of the thermal velocity and the mean free time. Mean free time is calculated from mobility of the mobile carriers which is determined experimentally.

From Table(1.10) we obtain the mobility values. In Table (1.11) the mobility, mean free time, thermal velocity and mean free paths are tabulated for Ge , Si and GaAs.

Table(1.11) Mobilities, Mean Free Times, Thermal Velocities and Mean Free Paths of Ge, Si and GaAs.

 Semiconductor μ n (cm^ 2 / (V-sec)) τ (femtosec) v e (m/sec) L* (A°) Ge 3900 2217 0.95×10^ 5 2106 Si 1350 767.6 0.95×10^ 5 729 GaAs 8600 4890 0.95×10^ 5 4645.5

As we see electron has much larger mobility in semiconductors as compared to that in metals. This implies that the mean free path of electrons is greater by one order of magnitude in semiconductor as compared to that in metal. But why is the scattering less in semiconductors as compared to that in metal.? This answer is obtained by determining the de Broglie wavelength of electron and by using wave optics.

We will determine the velocity of a conducting electron in Electron Microscope, in metal and in semiconductor. In these three cases the conducting electron gains Kinetic Energy equal to the Potential Energy it loses while falling through a potential difference of 10kV in case of Electron Microscope(because 10kV is the accelerating voltage in Electron Microscope), through a potential difference of 4V in case of metal(because average kinetic energy associated with conducting electron is (3/5)E F and E F is 7eV in copper) and through a potential difference 0.025V in case of semiconductor ( since thermal voltage at 300K Room Temperature is kT/q= 0.025V). From the kinetic velocity the de Broglie wavelength is determined. The set of equations are: Kinetic Energy gained =

Therefore momentum gained

;

Therefore de Broglie wavelength:

;

In Table (1.12) the de Broglie wavelengths are tabulated:

Table1.12. de Broglie wavelengths of conducting electron in Electron Microscope, Metal and Semiconductor.

 V acc v e (m/sec) λ(m) Implications Electron Microscope 10kV 59×10^ 6 10^ -11 m = (1/50)(5A°) λ<>a (lattice constant)

As seen from Table(1.12), we see that de Borglie wavelength is much less than the lattice constant in case of Electron Microscope. For 100kV , theoretically the resolution should be (1/100)(4A°) This is like Sunlight falling through a broad aperture. Sun-ray will pass in a straight line and shadow of the aperture should fall on the screen behind the aperture. Hence in an Electron Microscope, a regular lattice array does not scatter an electron beam. The shadow of the crystal lattice should be imaged. But this theoretical resolution is never achieved since we are using magnetostatic focusing. Only 1A° is the resolution actually achieved. In case of 10kV, though the theoretical resolution (1/50)(5A°) but in practice only 10A° resolution is achieved. The electron beam can penetrate through a thin specimen and produce the image of its broad features without being influenced by the atomic details.

how can chip be made from sand
is this allso about nanoscale material
Almas
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!