<< Chapter < Page Chapter >> Page >

While lithium shows many properties that are clearly consistent with its position in Group 1, it also has key differences to the other alkali metals. In fact, in many ways it is more similar to its diagonal neighbor magnesium (Mg) than the other Group 1 metals.


The ionic radius for the +1 cation of lithium is very small in comparison with its next highest homolog, sodium ( [link] ). This results in a correspondingly high value for the charge density (z/r). As may be seen from [link] the charge density for lithium is significantly higher than that of its Group 1 relations.

Comparison of charge densities for lithium, sodium, potassium, and magnesium.
Element z r (Å) z/r (Å -1 )
Li +1 0.68 1.47
Na +1 0.97 1.03
K +1 1.33 0.75
Mg +2 0.66 3.03

As a result of the high charge density, the Li + ion is a highly polarizing ion. One of the main consequences of this is that lithium tends to form polar covalent bonds rather than ionic interactions. For example, alkyl lithium compounds (RLi) contain covalent Li-C bonds in a similar manner to the Mg-C bonds in Grignards (RMgX, where X = Cl, Br).

Lattice energy

Lithium compounds have high lattice energies as compared to the other Group 1 metals ( [link] ). As a consequence Li 2 O, Li 3 N, and LiF are all insoluble in water, whereas their sodium compounds are highly soluble.

Comparison of lattice energies for compounds of lithium, sodium, potassium, and magnesium.
Compound Lattice energy (kJ/mol)
LiF -1046
NaF -923
KF -821
MgF 2 -2957

Coordination number

The small size of lithium results in a lower coordination number (4) for compounds and complexes than observed for the other Group 1 metals. However, lithium and magnesium complexes and organometallic compounds both have most commonly four-coordinate metal centers (in the absence of large steric constraints).

Chemical reactivity

A review of some of the reactions of lithium, magnesium and the other Group 1 metals shows the anomalous behavior of lithium and its similarity to magnesium. Both lithium and magnesium reacts with carbon or nitrogen to form the corresponding carbide and nitride. Whereas sodium and the other Group 1 metals show no reaction under ambient conditions. The combustion of either lithium or magnesium in air results in the formation of the oxides, Li 2 O and MgO, respectively. In contrast, sodium forms the peroxide, Na 2 O 2 .

It is not only in the reactivity of the elements that this relationship between lithium and its diagonal neighbor exists. Many of the compounds of lithium have a similar reactivity to those of magnesium rather than sodium. For example, the carbonates of lithium and magnesium decompose under thermolysis to yield the oxides, [link] and [link] , in contrast, sodium carbonate (Na 2 CO 3 ) is stable to thermolysis.

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
waht is hydrating power of lithium carbonates
Mahar Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Chemistry of the main group elements. OpenStax CNX. Aug 20, 2010 Download for free at http://cnx.org/content/col11124/1.25
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of the main group elements' conversation and receive update notifications?