<< Chapter < Page Chapter >> Page >
All quantities pertaining to motion are characteristically relative in nature.

The concept of relative motion in two or three dimensions is exactly same as discussed for the case of one dimension. The motion of an object is observed in two reference systems as before – the earth and a reference system, which moves with constant velocity with respect to earth. The only difference here is that the motion of the reference system and the object ,being observed, can take place in two dimensions. The condition that observations be carried out in inertial frames is still a requirement to the scope of our study of relative motion in two dimensions.

As a matter of fact, theoretical development of the equation of relative velocity is so much alike with one dimensional case that the treatment in this module may appear repetition of the text of earlier module. However, application of relative velocity concept in two dimensions is different in content and details, requiring a separate module to study the topic.

Relative motion in two dimensions

The important aspect of relative motion in two dimensions is that we can not denote vector attributes of motion like position, velocity and acceleration as signed scalars as in the case of one dimension. These attributes can now have any direction in two dimensional plane (say “xy” plane) and as such they should be denoted with either vector notations or component scalars with unit vectors.

Position of the point object

We consider two observers A and B. The observer “A” is at rest with respect to earth, whereas observer “B” moves with a constant velocity with respect to the observer on earth i.e. “A”. The two observers watch the motion of the point like object “C”. The motions of “B” and “C” are as shown along dotted curves in the figure below. Note that the path of observer "B" is a straight line as it is moving with constant velocity. However, there is no such restriction on the motion of object C, which can be accelerated as well.

The position of the object “C” as measured by the two observers “A” and “B” are r C A and r C B . The observers are represented by their respective frame of reference in the figure.

Positions

The observers are represented by their respective frame of reference.

Here,

r C A = r B A + r C B

Velocity of the point object

We can obtain velocity of the object by differentiating its position with respect to time. As the measurements of position in two references are different, it is expected that velocities in two references are different,

v C A = đ r C A đ t

and

v C B = đ r C B đ t

The velocities of the moving object “C” ( v C A and v C B ) as measured in two reference systems are shown in the figure. Since the figure is drawn from the perspective of “A” i.e. the observer on the ground, the velocity v C A of the object "C" with respect to "A" is tangent to the curved path.

Velocity

The observers measure different velocities.

Now, we can obtain relation between these two velocities, using the relation r C A = r B A + r C B and differentiating the terms of the equation with respect to time as :

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask